This paper presents the development of a hybrid solid-microcellular co-injection molding process that combines aesthetic and processing advantages of injection molding with benefits and property attributes of microcellular plastics (MCPs). A two-color injection molding machine has been modified and equipped with an interfacial platen and a supercritical fluid (SCF) unit for co-injection molding with regular resins and MCPs. Co-injection molded polystyrene (PS) parts with a microcellular core encapsulated by the solid skin layer have been successfully produced. Systematic experiments were carried out with solid-microcellular co-injection molding, conventional solid-solid co-injection molding, and regular microcellular injection molding processes to study the effects of process conditions and core/skin volume ratios on the penetration and morphology of the microcellular core. Light microscopy and scanning electron microscopy (SEM) of the solid-microcellular co-injection molded specimens reveal a microcellular core with fairly fine and uniform cell size of 8 to 12 microns and a cell density of up to 3 × 10 cells/cm. Under similar process conditions, microcellular cores were found to penetrate longer and generate a more uniform and thicker skin layer than do solid cores. While improving the surface finish with solid skin layers, this process is capable of producing parts with reduced sink marks, lighter part weights, and shorter cycle times.
This paper presents the effects of process conditions and nano‐clay fillers on the microstructure (namely, size, density, and distribution of microcells within samples) and the resulting mechanical properties of microcellular injection molded polyamide‐6 (PA‐6) nanocomposite and its neat‐resin counterpart. Based on the design of experiments (DOE) matrices, samples were molded at various supercritical fluid (SCF) levels, melt temperatures, shot sizes, melt plastication pressures (MPP), and injection speeds. These samples were then subjected to scanning electron microscope (SEM) analysis, tensile testing, and impact testing. For both materials, the microstructure and the mechanical properties of the molded samples were found to be dependent on the process conditions and presence of nano‐clay, which could serve as microcell nucleating agent. At higher weight reductions, the nanocomposite samples exhibit much smaller microcells and higher cell densities than those obtained in the neat‐resin samples. The SEM micrographs reveal noticeable differences in microcell surface roughness between the nanocomposite and the neat resin. A statistical design analysis was used to identify the optimal process conditions that would result in desirable cell size and density and, thus, better mechanical properties. For example, the highest tensile strengths have been observed at the highest levels of shot size, MPP, injection speed, and SCF level, and at the lowest level of melt temperature.
This study was aimed at understanding how the process conditions affect the weld‐line strength and microstructure of injection molded microcellular parts. A design of experiments (DOE) was performed and polycarbonate tensile test specimens were produced for tensile tests and microscopic analysis. Injection molding trials were performed by systematically adjusting four process parameters (i.e., melt temperature, shot size, supercritical fluid (SCF) level, and injection speed). For comparison, conventional solid specimens were also produced. The tensile strength was measured at the weld line and away from the weld line. The weld‐line strength of injecton molded microcellular parts was lower than that of its solid counterparts. It increased with increasing shot size, melt temperature, and injection speed, and was weakly dependent on the supercritical fluid level. The microstructure of the molded specimens at various cross sections were examined using scanning electron microscope (SEM) and a light microscope to study the variation of cell size and density with different process conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.