Cotton cellulose was dyed "in situ" with a polymeric dye generated by oxidative coupling of colourless 2,5-diaminobenzenesulfonic acid and 1-hydroxyphenol (catechol) with laccase. Up to 70% dye fixation was obtained increasing the concentration of catechol less soluble upon oxidation from 1 to 10 mmol, while 1 mmol of diamine was used. Dye fixation was not achieved using equal molar concentrations of the reagents.
Research on lignin biodegradation has become of great interest, due to the fact that lignin is one of the most abundant renewable materials, next to cellulose. Lignin is also the substance that gives color to raw flax fibers. In order to bleach the flax and to keep its tenacity high enough for textile applications, it is necessary to remove the lignin and partially to preserve the pectin. Lignin and pectin are the main constituents of the layer which sticks the flax cells together within the multicellular technical fiber. White-rot fungi and their oxidative enzymes, laccases and peroxid-ases (lignin peroxidases and manganese peroxidases), are being applied for the biobleaching of papermaking pulp, thereby reducing the need for environmentally harmful chemicals. Some data also suggest that it is possible to use other phenolytic enzymes, such as pure laccase, for this purpose. The objective of the present work was to study the possibility of bleaching flax fibers by pure laccase and combined laccase peroxide treatment, aimed at obtaining fibers with high whiteness and well-preserved tenacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.