Prestrain provides high actuation performance in dielectric elastomers (DEs) but increases the bulk, mass, and fatigue of the resulting actuators. Based on our experiments on prestrain-locked interpenetrating polymer films and the model developed by Zhao and Suo, materials with a certain stressstrain relationship should be capable of high strain without prestrain by suppressing electromechanical instability (EMI). Here, we report the synthesis of an acrylic elastomer capable of achieving high actuation performance without prestrain. DE films were directly fabricated by ultraviolet curing of precursors comprising a mixture of acrylate comonomers. Varying the amount of crosslinker comonomer in the precursor allowed us to tune the stress-strain relationship and completely suppress EMI while maintaining high strain performance. Addition of plasticizing agents increased strain sensitivity. The result is a new DE, synthesized from scratch, capable of high actuation strain (>100%), high energy density (>1 J g À1 ), and good temperature and frequency response without requiring prestretching. The material can be fabricated using conventional coating techniques and the process can allow for high volume throughput of stacked DE actuators.
Block copolymer elastomer conductors (BEC) are mixtures of block copolymers grafted with conducting polymers, which are found to support very large strains, while retaining a high level of conductivity. These novel materials may find use in stretchable electronics. The use of BEC is demonstrated in a capacitive strain sensor and in an artificial muscle of the dielectric elastomer actuator type, supporting more than 100% actuation strain and capacity strain sensitivity up to 300%.
High field properties and energy storage in nanocomposite dielectrics of poly(vinylidene fluoridehexafluoropropylene) J. Appl. Phys. 110, 044107 (2011); 10.1063/1.3609082 Effect of filament aspect ratio on the dielectric response of multiwalled carbon nanotube composites J. Appl. Phys. 109, 094109 (2011); 10.1063/1.3569596 Temperature dependence of electric and dielectric behaviors of Ni/polyvinylidene fluoride composites , ferro-, and dielectric properties of ceramic/polymer composites obtained from two modifications of lead titanate
This paper theoretically analyzes a dielectric elastomer tube actuator ͑DETA͒. Subject to a voltage difference between the inner and outer surfaces, the actuator reduces in thickness and expands in length, so that the same voltage will induce an even higher electric field. This positive feedback may cause the actuator to thin down drastically, resulting in electrical breakdown. We obtain an analytical solution of the actuator undergoing finite deformation when the elastomer obeys the neo-Hookean model. The critical strain of actuation is calculated in terms of various parameters of design. We also discuss the effect of the strain-stiffening on electromechanical behavior of DETAs by using the model of freely joined links.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.