Useful materials must satisfy multiple objectives, where the optimization of one objective is often at the expense of another. The Pareto front reports the optimal trade-offs between these conflicting objectives. Here we use a self-driving laboratory, Ada, to define the Pareto front of conductivities and processing temperatures for palladium films formed by combustion synthesis. Ada discovers new synthesis conditions that yield metallic films at lower processing temperatures (below 200 °C) relative to the prior art for this technique (250 °C). This temperature difference makes possible the coating of different commodity plastic materials (e.g., Nafion, polyethersulfone). These combustion synthesis conditions enable us to to spray coat uniform palladium films with moderate conductivity (1.1 × 105 S m−1) at 191 °C. Spray coating at 226 °C yields films with conductivities (2.0 × 106 S m−1) comparable to those of sputtered films (2.0 to 5.8 × 106 S m−1). This work shows how a self-driving laboratoy can discover materials that provide optimal trade-offs between conflicting objectives.
This paper introduces SiQAD, a computer-aided design tool enabling the rapid design and simulation of atomic silicon dangling bond quantum dot patterns capable of computational logic. Several simulation tools are included, each able to inform the designer on various aspects of their designs: a ground-state electron configuration finder, a non-equilibrium electron dynamics simulator, and an electric potential landscape solver with clocking electrode support. Simulations have been compared against past experimental results to inform the electron population estimation and dynamic behavior. New logic gates suitable for this platform have been designed and simulated, and a clocked wire has been demonstrated. This work paves the way for the exploration of the vast and fertile design space of atomic silicon dangling bond quantum dot circuits.
A novel combinatorial thin film material formulation and deposition platform integrating microfluidic processing and drop-on-demand inkjet patterning capabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.