Photo-induced super-hydrophilic thin films were fabricated on a quartz glass substrate by ultraviolet (UV) irradiation of a molecular precursor film at room temperature. A molecular precursor film exhibiting high solubility to both ethanol and water was obtained by spin-coating a solution involving a Ti(IV) complex; this complex was prepared by the reaction of Ti(IV) alkoxide with butylammonium hydrogen oxalate and hydrogen peroxide in ethanol. Transparent and well-adhered amorphous thin films of 160–170 nm thickness were obtained by weak UV irradiation (4 mW·cm−2 at 254 nm) of the precursor films for over 4 h at room temperature. The resultant thin films exhibiting low refractive indices of 1.78–1.79 were mechanically robust and water-insoluble. The chemical components of the thin films were examined by means of Fourier transform-infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) spectra, focusing on the presence of the original ligands. The super-hydrophilic properties (evaluated based on the water contact angles on the surfaces) of the thin films after being kept in a dark condition overnight emerged when the aforementioned UV-light irradiation was performed for 10 min. It was additionally clarified that the super-hydrophilicity can be photo-induced repeatedly by UV irradiation for 10 min (indicated by a contact angle smaller than 4°) even after the hydrophilic level of the thin films had once been lowered by being in a dark condition for 4 h.
The inactivation ability of SARS-CoV-2 (COVID-19) was examined using two types of transparent Cu2O thin films with different crystallinities on a Na-free glass substrate. The low-crystallinity Cu2O thin film, which was fabricated by irradiating 254 nm ultraviolet (UV)-light with an intensity of 6.72 mW cm[Formula: see text] onto a spin-coated precursor film involving Cu[Formula: see text] complexes at room temperature, exhibited an outstanding COVID-19 inactivation ability to reduce 99.999% of the virus after 1 h of incubation. The X-ray diffraction results of the UV-irradiated thin film indicated a cubic Cu2O lattice with a small crystallite size of 2 ± 1 nm. Conversely, the high-crystallinity Cu2O thin film with a crystallite size of 16 ± 3 nm, obtained by heating a spin-coated precursor film containing another Cu[Formula: see text] complex, showed a negligibly low inactivation activity at the same level as the Na-free glass substrate. The eluted concentrations of Cu ions from both Cu2O thin films were analyzed after immersion in Dulbecco’s modified Eagle’s medium (DMEM) for 0.25–2 h. The eluted Cu–ion concentration of 1.16 ppm was observed for the UV-irradiated thin film by DMEM immersion after 1 h, but that of 0.04 ppm was observed for the heat-treated thin film. This indicated that an important factor of virus inactivation on Cu2O thin films is highly related to the elution of Cu ions that occurred from the surface in the medium.
A Cu film with the ability to rapidly inactivate the COVID-19 virus was easily fabricated at approximately 23[Formula: see text]C on a Na-free glass substrate. The well-adhered Cu films with thickness of approximately 16 [Formula: see text]m and surface area of 8.71 10[Formula: see text] m2 g[Formula: see text] were obtained by immersion of the glass substrate into an aqueous solution with dissolved Cu (II) complex of ammonia and ascorbic acid. The interface bonded between the film and glass substrate was very strong, such that the film did not peel off even when it was exposed to an ultrasonic wave of 100 mW (42 kHz) in water. The anti-COVID-19 activity in Dulbecco’s modified Eagle’s medium (DMEM) is effective within 2 h and is faster than that of commercial copper plates. The changes in the relative abundance of Cu2O and CuO crystallines on the Cu film due to DMEM treatment and those in surface morphology were examined by X-ray diffraction peak analysis and field emission-scanning electron microscopy, respectively. The flame atomic absorption analyses of the recovered solutions after DMEM treatment indicated that the Cu ions from the Cu film with DMEM treatment for 1 hour at a concentration of 0.64 ± 0.03 ppm were eluted 2.3 times faster than those from the Cu plate. The rapid elution of Cu ions from Cu2O crystallines on the film in the early stage is the primary factor in the inactivation of the COVID-19 virus, as elucidated from the time dependence of eluted Cu ions by DMEM treatment. Results from thermogravimetric and differential thermal analysis (TG-DTA) of the powder scratched from the Cu film suggested that a trace amount of organic residues remaining in the Cu film was important in the rapid activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.