Spinal cords of sea lamprey larvae were transected at one of two levels: (a) rostral, at the last gill, or (b) caudal, at the cloaca. Following various recovery times, regeneration of the posteriorly projecting giant reticulospinal axons (RAs) was demonstrated by intra-axonal injection of horseradish peroxidase (HRP). Regeneration of axons of anteriorly projecting dorsal cells (DCs) and giant interneurons (GIs) was demonstrated by intrasomatic HRP injection into cells located just below the transection scar. After 40 days of recovery, 55% of proximally transected RAs (rostral cut) regenerated at least as far as the center of the scar, whereas only 15% of distally transected RAs (caudal cut) did so. Maximum distance of regeneration was 5.3 mm beyond the scar for proximally transected RAs but only 38 u for distally transected RAs. Proximally transected RAs also branched more profusely than distally transected ones. These data (when combined with others in the literature) suggest that the regenerative capacity of RAs may decrease with distance of axotomy from the cell body. Distance of regeneration and degree of branching of proximally transected RAs peaked between 40 and 100 days. Thereafter, there appeared to be a tendency toward neurite retraction. Of axotomized GIs, 76% regenerated anteriorly at least as far as the center of a caudal transection scar (GIs are located only in the caudal part of the cord). The maximum distance of regeneration was 1.3 mm beyond the scar. Of DC axons, 56% regenerated anteriorly at least as far as the transection site. The maximum distance was 1.1 mm beyond the scar. DCs located just below a caudal transection regenerated at least as well as those located below a rostral transection. Axonal regeneration was also demonstrated for a few lateral cells, edge cells, and crossed caudally projecting interneurons.
The projection patterns of regenerating spinal axons in the larval sea lamprey (Petromyzon marinus) were determined by intracellular injection of HRP. Four hundred and eighty-six of 562 stained axons and axon-like neurites (87%) arising from Muller and Mauthner axons, giant interneurons, and dorsal cells terminated in an orientation similar to that of their counterpart control cells. Therefore, lamprey spinal axons regenerate selectively along their normal projection paths. During the first 4 weeks of recovery, i.e., before any had regenerated beyond the transection site, 91 of 114 axons and long neurites (80%) projected in the proper direction. Thus, the correctness of the final projection patterns did not result from selective retraction of randomly directed long neurites. When the cords were doubly transected 1 cm apart, orientation of regenerating neurites remained normal both within the 1 cm island and in the adjacent spinal cord. This suggests that the directional specificity of axonal regeneration was determined neither by the location of the scar nor by the availability of channels formed by the degenerating fibers. Finally, removing 1 cm of spinal cord eliminated potential synaptic targets for regenerating axons on either side of the lesion, but did not affect the direction of axonal growth. These findings are consistent with the hypothesis that the regeneration of lamprey spinal axons is guided by local chemical cues that persist long after the pathways are formed early in development.
Bovine corneal endothelial cells express glucocorticoid receptor (GR) mRNA and protein. DEX decreases cell proliferation and induces cellular apoptosis and/or necrosis at high concentrations. DEX also increases the Na+-K+-ATPase activity at certain concentrations.
After spinal transection in ammocoetes (lamprey larvae) 4 to 5 years old, functional recovery is accompanied by a limited regeneration in which axons grow as far as 5 millimeters beyond the scar. In axotomized giant interneurons labeled intracellularly with horseradish peroxidase 16 to 120 days after transection, 74 percent of regenerating neurites grew in their normal projection pattern, rostal and contralateral to the cell body. One third of the neurites originated anomalously from posterior dendrites. Despite their initial abnormal orientation, 80 percent of these neurites looped contralaterally and rostrally to assume the normal projection path. The directional specificity persisted when giant interneurons were located in islands formed by double simultaneous cord transection. This limited regeneration seems to be characterized by directional selectivity that cannot be attributed to nonspecific influences, such as a tendency of neurites to grow in an already established direction or a trophic effect of the zone of injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.