We have previously used mosaic flies to screen for tumour suppressors or negative regulators of cell proliferation. The cellular composition of these flies resembles that of cancer patients who are chimaeric individuals carrying a small number of mutated somatic cells. One of the genes we identified is the large tumour suppressor gene, lats (also known as wts), which encodes a putative serine/threonine kinase. Somatic cells mutant for lats undergo extensive proliferation and form large tumours in many tissues in mosaic adults. Homozygous mutants for various lats alleles display a range of developmental defects including embryonic lethality. Although many tumour suppressors have been identified in Drosophila melanogaster, it is not clear whether these fly genes are directly relevant to tumorigenesis in mammals. Here, we have isolated mammalian homologues of Drosophila lats. Human LATS1 suppresses tumour growth and rescues all developmental defects, including embryonic lethality in flies. In mammalian cells, LATS1 is phosphorylated in a cell-cycle-dependent manner and complexes with CDC2 in early mitosis. LATS1-associated CDC2 has no mitotic cyclin partner and no kinase activity for histone H1. Furthermore, lats mutant cells in Drosophila abnormally accumulate cyclin A. These biochemical observations indicate that LATS is a novel negative regulator of CDC2/cyclin A, a finding supported by genetic data in Drosophila demonstrating that lats specifically interacts with cdc2 and cyclin A.
Genome editing represents a promising strategy for the therapeutic correction of COL7A1 mutations that cause recessive dystrophic epidermolysis bullosa (RDEB). DNA cleavage followed by homology-directed repair (HDR) using an exogenous template has previously been used to correct COL7A1 mutations. HDR rates can be modest, and the double-strand DNA breaks that initiate HDR commonly result in accompanying undesired insertions and deletions (indels). To overcome these limitations, we applied an AT/GC adenine base editor (ABE) to correct two different COL7A1 mutations in primary fibroblasts derived from RDEB patients. ABE enabled higher COL7A1 correction efficiencies than previously reported HDR efforts. Moreover, ABE obviated the need for a repair template, and minimal indels or editing at off-target sites was detected. Base editing restored the endogenous type VII collagen expression and function in vitro. We also treated induced pluripotent stem cells (iPSCs) derived from RDEB fibroblasts with ABE. The edited iPSCs were differentiated into mesenchymal stromal cells, a cell population with therapeutic potential for RDEB. In a mouse teratoma model, the skin derived from ABE-treated iPSCs showed the proper deposition of C7 at the dermaleepidermal junction in vivo. These demonstrate that base editing provides an efficient and precise genome editing method for autologous cell engineering for RDEB.
Dendrobium is a traditional Chinese herb with anti-diabetic effects and has diverse bibenzyls as well as phenanthrenes. Little is known about Dendrobium polyphenols anti-diabetic activities, so, a rich-polyphenols extract of D. loddigesii (DJP) was used for treatment of diabetic db/db mice; the serum biochemical index and tissue appearance were evaluated. In order to gain an insight into the anti-diabetic mechanism, the oxidative stress index, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and gut microbiota modulation were determined by ELISA, immunohistochemistry or high throughput sequencing 16S rRNA gene. The results revealed that DJP had the effects to decrease the blood glucose, body weight, low density lipoprotein cholesterol (LDL-C) levels and increase insulin (INS) level in the mice. DJP improved the mice fatty liver and diabetic nephropathy. DJP showed the anti-oxidative abilities to reduce the malondialdehyde (MDA) level and increase the contents of superoxide dismutase (SOD), catalase (CAT) as well as glutathione (GSH). DJP exerted the anti-inflammatory effects of decreasing expression of IL-6 and TNF-α. After treatment of DJP, the intestinal flora balance of the mice was ameliorated, increasing Bacteroidetes to Firmicutes ratios as well as the relative abundance of Prevotella/Akkermansia and reducing the relative abundance of S24-7/Rikenella/Escherichia coli. The function’s prediction of gut microbiota indicated that the microbial compositions involved carbohydrate metabolism or lipid metabolism were changed. This study revealed for the first time that DJP improves the mice symptoms of diabetes and complications, which might be due to the effects that DJP induced the decrease of inflammation as well as oxidative stress and improvement of intestinal flora balance.
A water-soluble acrylamide hydrophobically associating terpolymer for polymer flooding was successfully synthesized via free radical polymerization using acrylamide (AM), acrylic acid (AA), and N,N-divinylnonadeca-1,10-dien-2-amine (DNDA) as raw materials. The terpolymer was characterized by IR spectroscopy and fluorescence spectra. Compared with partially hydrolyzed polyacryamide (HPAM), the terpolymer showed a stronger link and better dimensional network structure under the environmental scanning electron microscope (ESEM). The results of rheology indicated that the terpolymer (AM-NaAA-DNDA) showed an excellent shear-resistance in high shear rate (1000 s À1 ) and remarkable temperature-tolerance (above 110 C). The salt-resisting experiment revealed that this terpolymer had a better anti-salt ability. According to the core flooding test, it could be obtained that oil recovery was enhanced more than 15% under conditions of 2000 mg/L terpolymer in the mineralization of 8000 mg/L at 60 C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.