This paper reports the demonstration of structural effects on excimer laser crystallization (ELC) for the Si strip with a recessed-channel structure on the silicon nitride under-layer (RCS-ULN). We revealed that a single location-controlled grain boundary (GB) oriented normal to the Si strip in the middle site without any other GB in the recessed region can be attained via ELC for the RCS-ULN structures with a short recessed region between neighboring long thick regions in a narrow Si strip. This can be attributed to the effective production of a significant 2D lateral thermal gradient in the recessed region and neighboring thick regions. Consequently, the RCS-ULN TFTs fabricated at the position one-half of such an optimal recessed region can achieve a superior field-effect mobility of 670 cm 2 V −1 • s −1 with minor performance variations since the single-crystal-like Si channel has been adopted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.