Calonectria ilicicola (ana. Cylindrocladium parasiticum) is a soilborne plant pathogenic fungus with a broad host range, and it can cause red crown rot of soybean and Cylindrocladium black rot of peanut, which has become an emerging threat to crop production worldwide. Limited molecular studies have focused on Calonectria ilicicola and one of the possible difficulties is the lack of genomic resource. This study presents the first high quality and near-completed genome of C. ilicicola using the Oxford Nanopore GridION sequencing platform. A total of 16 contigs were assembled and the genome of C. ilicicola isolate F018 was estimated to have 11 chromosomes. Currently, the C. ilicicola F018 genome represents the most contiguous assembly, which has the lowest contig number and the highest contig N50 among all Calonectria genome resources. Putative protein-coding sequences and secretory proteins were estimated to be 17,308 and 1,930 in the C. ilicicola F018 genome, respectively; and the prediction was close to other plant pathogenic fungi such as Fusarium species within the Nectriaceae family. The availability of this high-quality genome resource is expected to facilitate research on fungal biology and genetics of C. ilicicola, and to support the understanding on pathogen virulence and disease management.
Reactive oxygen species (ROS) have been proposed as the key stimulus for sclerotia development by studying fungal systems such as Sclerotinia sclerotiorum , and the theory has been adapted for microsclerotia development in Verticillium dahliae and Nomuraea rileyi . While many studies agreed on the association between (micro)sclerotia development and the ROS pathway, which ROS type, superoxide ( O 2 − ) or hydrogen peroxide (H 2 O 2 ), plays a major role in initiating hyphal differentiation to the (micro)sclerotia formation remains controversial, and literature supporting either O 2 − or H 2 O 2 can be found.
Starting from the May to August 2020 (average humidity 76.6% and temperature 25.2°C in Taipei), Boston ivy (Parthenocissus tricuspidata) plants on the campus of National Taiwan University (25°01'05.4"N 121°32'36.6"E) exhibited leaf rusts caused by Phakopsora ampelopsidis (Tzean et al., 2019) and leaf spots caused by an unknown pathogen. The leaf spots appeared reddish to brown color and mostly irregular to round shape on the simple and trifoliate leaflets (Supplemental Figure 1A-C). The leaf spots were surface-disinfected with 1% NaOCl for 30 seconds, and the margin of healthy and infected tissues was cut and placed onto water agar, which were incubated at room temperature. Hyphae grown out from leaf spots were sub-cultured on potato dextrose agar (PDA), and the majority of isolates exhibited white colony with black pycnidial conidiomata embedded in PDA. The pycnidial conidiomata of two-week-old has an average diameter of 463±193 μm (n=30) and the sizes of α-conidia were 5.71±0.49 μm in length and 2.42±0.32 μm in width (n=50) similar to the previous records (Crous et al. 2015). The α-conidium was one-celled, hyaline, and ovoid with two droplets (Supplemental Figure 1D-G). This putative pathogen was re-inoculated to confirm its pathogenicity on the leaves of Boston ivy plants. A PDA block with actively growing fungal edge was placed on the tiny needle-wounded leaves of detached branches (Supplemental Figure H-I) and the whole plants in pots (Supplemental Figure 1J-M) in a moist chamber at 28°C in dark. Reddish to brown leaf spots were observed by 2 days post-inoculation (dpi) and the leaf spots expanded by 5 dpi. To complete the Koch’s postulates, the pathogen was re-isolated from inoculated leaves and the re-isolated pathogen exhibited identical morphology to the original isolate. The internal transcribed spacer (ITS), translational elongation factor subunit 1-α gene (EF1α), β-tubulin (BT), and calmodulin (CAL) was amplified using the primers ITS1/ITS4 (Martin and Rygiewicz. 2005), EF1-728F/EF1-986R, Bt2a/Bt2b, and CAL-228F/CAL-737R, respectively (Manawasinghe et al. 2019). Using BLAST in the NCBI database, the ITS (MT974186), EF1α (MT982963), and β-tubulin (MT982962) sequences showed 98.57% (NR_147574.1, 553 out of 561 bp), 98.04% (KR936133.1, 350 out of 357 bp), and 99.23% (KR936132.1, 518 out of 522 bp) identity to the Diaporthe tulliensis ex-type BRIP 62248a, respectively (Dissanayake et al. 2017). Phylogenetic analysis using concatenated sequences of ITS, EF1α, and β-tubulin grouped the D. tulliensis isolated from Boston ivy leaf spots with the D. tulliensis ex-type (Supplemental Figure 1N). In summary, the morphological and molecular characterizations supported the causal pathogen of Boston ivy leaf spot as D. tulliensis. While Diaporthe ampelopsidis was reported to infect Parthenocissus quinquefolia and P. tricuspidata (Anonymous, 1960; Wehmeyer, 1933), there is no record for D. tulliensis infecting Boston ivy according to the USDA National Fungus Collections (Farr and Rossman. 2020). Because pathogens of Boston ivy such as P. ampelopsidis may also infect close-related crops like grape (Vitis vinifera L.) and D. tulliensis has been known to infect kiwifruits (Actinidia chinensis) and cocoa (Theobroma cacao) (Bai et al. 2016; Yang et al. 2018), the emergence of D. tulliensis should be aware to avoid potential damage to economic crops.
Sclerotia are specialized fungal structures formed by pigmented and aggregated hyphae, which can survive under unfavourable environmental conditions and serve as the primary inocula for several phytopathogenic fungi including Rhizoctonia solani. Among 154 R. solani anastomosis group 7 (AG-7) isolates collected in fields, the sclerotia-forming capability regarding sclerotia number and sclerotia size varied in the fungal population, but the genetic makeup of these phenotypes remained unclear. As limited studies have focused on the genomics of R. solani AG-7 and the population genetics of sclerotia formation, this study completed the whole genome sequencing and gene prediction of R. solani AG-7 using the Oxford NanoPore and Illumina RNA sequencing. Meanwhile, a high-throughput image-based method was established to quantify the sclerotia-forming capability, and the phenotypic correlation between sclerotia number and sclerotia size was low. A genome-wide association study identified three and five significant SNPs associated with sclerotia number and size in distinct genomic regions, respectively. Of these significant SNPs, two and four showed significant differences in the phenotypic mean separation for sclerotia number and sclerotia size, respectively. Gene ontology enrichment analysis focusing on the linkage disequilibrium blocks of significant SNPs identified more categories related to oxidative stress for sclerotia number, and more categories related to cell development, signalling and metabolism for sclerotia size. These results indicated that different genetic mechanisms may underlie these two phenotypes. Moreover, the heritability of sclerotia number and sclerotia size were estimated for the first time to be 0.92 and 0.31, respectively. This study provides new insights into the heritability and gene functions related to the development of sclerotia number and sclerotia size, which could provide additional knowledge to reduce fungal residues in fields and achieve sustainable disease management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.