This study is focused on the wave energy converter of an oscillating water column (OWC) system that is integrated with a jacket type infrastructure applied for an offshore wind turbine system. In this way, electricity generation by both wind power and wave power can be conducted simultaneously to maximize the utilization of sustainable energy. A numerical analysis was performed in this research to model and simulate the airflow response and evaluate the converting efficiency of wave energy from an OWC system integrated with an offshore template structural system. The performance of the system including the generating airflow velocity, air-pressure in the chamber, generating power and then the converting efficiency of power from waves are all analyzed and discussed in terms of the variations of the OWC system’s geometrical parameters. The parameters under consideration include the exhale orifice-area of airflow, gate-openings of inflow water and the submerged chamber depth. It is found that from the analytical results the performance of the OWC wave energy converter is influenced by the dimensional parameters along with the design conditions of the local environment. After a careful design based on the in-situ conditions including water depth and wave parameters, an open OWC system can be successfully applied to the template structure of offshore wind power infrastructure as a secondary generating system for the multi-purpose utilization of the structure.
This study focuses on the analysis of the parameters of an oscillating water column (OWC) wave energy conversion system and wave conditions. Interactions between the dimensions of the OWC chambers and wave conditions are all taken into account to design an alternative OWC converter, called caisson-based OWC type wave energy converting system. A numerical method using an unsteady Navier-Stokes equations theorem in conservation form is used to analyze the proposed analytical model. The objective of this study is to try to apply an OWC wave energy converter to a caisson breakwater, which has been constructed in a harbor. The structure proposed in this study is a series of sets of independent systems, in which each set of converters is composed of three chambers to capture the wave energy, while better ensuring the safety of the caisson breakwater. Responses to be analyzed related to the conversion efficiency of the caisson-based OWC wave energy converting system include the airflow velocity from the air-chamber, the pneumatic power and the conversion efficiency in terms of a ratio between the pneumatic power and the energy of the incident waves. Parameters examined in this study include the dimensions of the OWC chamber features such as the orifice of the air-chamber allowing airflow in/output, the chamber length along the direction of incident waves, the size of the opening gate for incident waves and the submersion depth of the air-chamber. As found from the results, a best conversion efficiency from incident waves of 32% can be obtained for the extreme case where the orifice is very small, but for most other cases in the study, the best efficiency is about 15%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.