Carbon nanotubes are a nanomaterial that is extensively used in industry. The potential health risk of chronic carbon nanotubes exposure has been raised as of great public concern. In the present study, we have demonstrated that intratracheal instillation of 0.5 mg of single-walled carbon nanotubes (SWCNT) into male ICR mice (8 weeks old) induced alveolar macrophage activation, various chronic inflammatory responses, and severe pulmonary granuloma formation. We then used Affymetrix microarrays to investigate the molecular effects on the macrophages when exposed to SWCNT. A biological pathway analysis, a literature survey, and experimental validation suggest that the uptake of SWCNT into the macrophages is able to activate various transcription factors such as nuclear factor kappaB (NF-kappaB) and activator protein 1 (AP-1), and this leads to oxidative stress, the release of proinflammatory cytokines, the recruitment of leukocytes, the induction of protective and antiapoptotic gene expression, and the activation of T cells. The resulting innate and adaptive immune responses may explain the chronic pulmonary inflammation and granuloma formation in vivo caused by SWCNT.
Using maskless lithography and electroforming techniques, we have demonstrated an enhanced performance of GaN/sapphire light-emitting diode (LED) embedded in a reflective copper heat spreader. The chip size and dominant wavelength of the blue emitter used in this research is 1 X 1 mm(2) and 455 nm, respectively. The cup-shaped LED heat sink is electroformed on sapphire directly using the spin-coated photoresist coated with the Au/Cr/Ag mirror as a mold and dicing into the embedded LED with a Cu base dimension of 3 X 3 mm(2), which effectively enhances the heat dissipation down to the metal frame and reaps the light flux generated from the side emission. With the aid of a reflective heat spreader, the encapsulated LED sample driven at 1 A yields the light output power of 700 mW and around 2.7-times increase in the wall-plug efficiency compared to that of the conventional GaN/sapphire LED. Infrared thermal images confirm the GaN/sapphire LED with more efficient heat extraction and better temperature uniformity. These results exhibit an alternative solution to thermal management of high power LED-on-sapphire samples besides the laser lift-off technique. (C) 2008 American Institute of Physics
Maxillomandibular advancement is one of the treatments available for obstructive sleep apnea. The influence of this surgery on the upper airway and its mechanism are not fully understood. The present research simulates the flow fields of narrowed upper airways of 2 patients with obstructive sleep apnea treated with maxillomandibular advancement. The geometry of the upper airway was reconstructed from computed tomographic images taken before and after surgery. The consequent three-dimensional surface model was rendered for measurement and computational fluid dynamics simulation. Patients showed clinical improvement 6 months after surgery. The cross-sectional area of the narrowest part of the upper airway was increased in all dimensions. The simulated results showed a less constricted upper airway, with less velocity change and a decreased pressure gradient across the whole conduit during passage of air. Less breathing effort is therefore expected to achieve equivalent ventilation with the postoperative airway. This study demonstrates the possibility of computational fluid dynamics in providing information for understanding the pathogenesis of OSA and the effects of its treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.