Background We developed a porous Ti alloy/PEEK composite interbody cage by utilizing the advantages of polyetheretherketone (PEEK) and titanium alloy (Ti alloy) in combination with additive manufacturing technology. Methods Porous Ti alloy/PEEK composite cages were manufactured using various controlled porosities. Anterior intervertebral lumbar fusion and posterior augmentation were performed at three vertebral levels on 20 female pigs. Each level was randomly implanted with one of the five cages that were tested: a commercialized pure PEEK cage, a Ti alloy/PEEK composite cage with nonporous Ti alloy endplates, and three composite cages with porosities of 40, 60, and 80%, respectively. Micro-computed tomography (CT), backscattered-electron SEM (BSE-SEM), and histological analyses were performed. Results Micro-CT and histological analyses revealed improved bone growth in high-porosity groups. Micro-CT and BSE-SEM demonstrated that structures with high porosities, especially 60 and 80%, facilitated more bone formation inside the implant but not outside the implant. Histological analysis also showed that bone formation was higher in Ti alloy groups than in the PEEK group. Conclusion The composite cage presents the biological advantages of Ti alloy porous endplates and the mechanical and radiographic advantages of the PEEK central core, which makes it suitable for use as a single implant for intervertebral fusion.
What used to be considered a novel drilling technique, the use of synthetic diamond cutters in a drag bit configuration, has now emerged in the drilling industry as a time and cost efficient drilling tool. These bits, utilizing polycrystalline diamond compact cutters for drilling soft or plastic formations have been proven successful through a systematic development. First, the main problem associated with drilling soft or plastic formations was identified as bit cleaning. Second, laboratory tests of a single compact cutting plastic shale under confining pressure with a load dynamometer and high speed photography were studied. The results demonstrated that a compact incorporating side rake angle and ample chip clearance space can provide efficient mechanical cleaning action. Finally, new style drill and core bits, built with side rake orientation along with previous style drill and core bits without side rake features, were field tested and observed in the same drill hole or in the same formation. The drill or core bits with side rake features always drilled or cored faster in the soft or plastic formations than those bits without side rake under the same operating parameters (hydraulic, bit weight and rpm). It was concluded that bits with side rake features can enhance the bit cleaning by mechanical cleaning action and, therefore, improve the bit performance in soft or plastic formations.
It is well understood and documented that bottom-hole hydraulics plays an important role in conventional diamond bit performance. Recent industry experience has shown a similar importance with the new synthetic diamond compact bits. Certain types of polycrystalline diamond compact bits have cutters arranged in a reverse spiral mode. For optimum performance bit hydraulic design should be tailored to that reverse spiral mode. Theory reveals that a bit built with rectangular nozzles with a long axis in the tangential direction can give a fluid velocity envelope similar to the envelope of the reverse spiral. A rectangle can also reduce bit plugging by providing an increased perimeter in a non-concentric geometry. The introduction of rectangular nozzles into the bit renders the regular round nozzle pressure drop equation unsuitable for direct application. Extensive hydraulic tests were performed with different configurations of rectangular nozzles to establish more accurate pressure loss equations. The experiments included single nozzle studies and laboratory and field tests of bits. Field test results confirmed the reliability of the results obtained in the laboratory studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.