It is generally believed that consolidation of long-term memory requires activation of protein kinases, transcription of genes, and new protein synthesis. However, little is known about the signal cascades involved in the extinction of memory, which occurs when the conditioned stimulus is no longer followed by the unconditioned stimulus. Here, we show for the first time that an intra-amygdala injection of transcription inhibitor actinomycin D at the dose that blocked acquisition failed to affect extinction of a learned response. Conversely, protein synthesis inhibitor anisomycin blocked both acquisition and extinction. Extinction training-induced expression of calcineurin was blocked by anisomycin but not by actinomycin D. NMDA receptor antagonist, phosphatidylinositol 3-kinase (PI-3 kinase), and MAP kinase inhibitors that blocked the acquisition also blocked the extinction of conditioned fear. Likewise, PI-3 kinase inhibitor blocked fear training-induced cAMP response element-binding protein (CREB) phosphorylation as well as extinction training-induced decrease in CREB phosphorylation, the latter of which was associated with calcineurin expression and could be reversed by a specific calcineurin inhibitor. Thus, molecular processes that underlie long-term behavioral changes after acquisition and extinction share some common mechanisms and also display different characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.