This study applies a transparent micro model and digital image analysis to the experimental study of the displacement mechanisms for water and air in porous media during imbibition process, and examines the displacement formulas. This study conducts experiments following Lenormand's assumptions as closely as possible. Various displacement mechanisms were observed, and their images were recorded. The displacement mechanisms in imbibition are mainly snap-off, In type imbibition and piston-type motion. The experimental fluid displacement images and associated capillary pressure were then used to verify the displacement formulas. This experimental study shows that, when snap-off occurred, the experimental capillary pressures were close to the Lenormand's estimation of critical capillary pressures where enough surrounding area of the throat was saturated. When I1 and I2 type imbibitions occurred, the experimental capillary pressures were also close to the Lenormand's estimation of critical capillary pressures where enough connecting throats were saturated. The In type imbibition and its associated piston-type motions are the main processes to increase the wetting phase fluid saturation. For the pore-throat distribution applied in this study, snap-off can facilitate the occurrence of In type imbibition and its associated piston-type motion; therefore, snap-off is an important displacement mechanism in facilitating the increase of the wetting phase fluid saturation in the imbibition process. To summarize, this study provides valuable experimental support and suggestions for Lenormand's displacement formulas, which are the basis for many related experimental and numerical studies.
The effect of a gravel subgrade on the hydraulic performance of GCLs is investigated. Laboratory test results show that the GCL specimens exhibit significant variation in thickness when compressed against gravel. The maximum and minimum thicknesses of the specimen were about 20 and 3 mm, respectively, after consolidation by an effective stress up to 138 kPa. However, the permittivity of GCLs remained very low. The permittivity of both needlepunched and adhesive-bonded geotextile-supported GCLs decreased with increasing confining stress, regardless of the type of subgrade materials. In general, larger particles led to more significant migration of bentonite. Nevertheless, there was no significant difference in the degree of bentonite migration between the two GCLs investigated.
Abstract. The occurrence of typhoon Herb in 1996 caused massive landslides in the Shenmu area of Taiwan. Many people died and stream and river beds were covered by meters of debris. Debris flows almost always take place in the Shenmu area during the flood season, especially in the catchment areas around Tsushui river and Aiyuzih river. Anthropogenic and natural factors that cause debris flow occurrences are complex and numerous. The precise conditions of initiation are difficult to be identified, but three factors are generally considered to be the most important ones, i.e. rainfall characteristics, geologic conditions and topography. This study proposes a simple and feasible process that combines remote sensing technology and multi-stage high-precision DTMs from aerial orthoimages and airborne LiDAR with field surveys to establish a connection between three major occurrence factors that trigger debris flows in the Shenmu area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.