Bioprostheses derived from biological tissues must be chemically modified and subsequently sterilized before they can be implanted in humans. Various crosslinking reagents, including formaldehyde, glutaraldehyde, dialdehyde starch, and epoxy compound, have been used to chemically modify biological tissues. However, these synthetic crosslinking reagents are all highly (or relatively highly) cytotoxic. It is therefore desirable to provide a crosslinking reagent suitable for use in biomedical applications that is of low cytotoxicity and that forms stable and biocompatible crosslinked products. This study evaluates the feasibility of using a naturally occurring crosslinking reagent--genipin--to chemically modify biological tissues. Genipin and its related iridoid compounds, extracted from gardenia fruits, have been used in traditional Chinese medicine for the treatments of jaundice and various inflammatory and hepatic diseases. In this feasibility study, the cytotoxicity of genipin and the crosslinking characteristics of genipin-fixed biological tissues were investigated. Fresh porcine pericardia procured from a slaughterhouse were used as raw materials. Glutaraldehyde and an epoxy compound (ethylene glycol diglycidyl ether), which has been used extensively in developing bioprostheses, were used as controls. It was found that the cytotoxicity of genipin was significantly lower than that of glutaraldehyde and the epoxy compound. The amino acid residues in the porcine pericardium that may react with genipin were lysine, hydroxylysine, and arginine. Additionally, the genipin-fixed tissue had a mechanical strength and resistance against enzymatic degradation comparable to the glutaraldehyde-fixed tissue. This suggests that genipin can form stable crosslinked products. The results of this in vitro study demonstrate that genipin is an effective crosslinking reagent for biological tissue fixation.
The study was to investigate the crosslinking characteristics, mechanical properties, and resistance against enzymatic degradation of biological tissues after fixation with genipin (a naturally occurring crosslinking agent) and/or carbodiimide. Fresh tissue was used as a control. It was found that both genipin and carbodiimide are effective crosslinking agents for tissue fixation and genipin crosslinking is comparatively slower than carbodiimide crosslinking. Additionally, tissue fixation in genipin and/or carbodiimide may produce distinct crosslinking structures. Carbodiimide may form intrahelical and interhelical crosslinks within or between tropocollagen molecules, whereas genipin may further introduce intermicrofibrillar crosslinks between adjacent collagen microfibrils. The stability (denaturation temperature and resistance against enzymatic degradation) of the fixed tissue is mainly determined by its intrahelical and interhelical crosslinks. In contrast, intermicrofibrillar crosslinks significantly affect the mechanical properties (tissue shrinkage during fixation, tensile strength, strain at break, and ruptured pattern) of the fixed tissue. Moreover, the degree of enzymatic degradation of the fixed tissue may be influenced by three factors: the availability, to the enzyme, of recognizable cleavage sites, the degree of crosslinking, and the extent of helical integrity of tropocollagen molecules in tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.