Autophagy is an evolutionarily conserved pathway to degrade damaged proteins and organelles for subsequent recycling in cells during times of nutrient deprivation. This process plays an important role in tumor development and progression, allowing cancer cells to survive in nutrient-poor environments. The plant kingdom provides a powerful source for new drug development to treat cancer. Several plant extracts induce autophagy in cancer cells. However, little is known about the role of plant extracts in autophagy inhibition, particularly autophagy-related (ATG) proteins. In this study, we employed S-tagged gamma-aminobutyric acid receptor associated protein like 2 (GABARAPL2) as a reporter to screen 48 plant extracts for their effects on the activity of autophagy protease ATG4B. Xanthium strumarium and Tribulus terrestris fruit extracts were validated as potential ATG4B inhibitors by another reporter substrate MAP1LC3B-PLA2. The inhibitory effects of the extracts on cellular ATG4B and autophagic flux were further confirmed. Moreover, the plant extracts significantly reduced colorectal cancer cell viability and sensitized cancer cells to starvation conditions. The fruit extract of X. strumarium consistently diminished cancer cell migration and invasion. Taken together, the results showed that the fruit of X. strumarium may have an active ingredient to inhibit ATG4B and suppress the proliferation and metastatic characteristics of colorectal cancer cells.
Breast cancer is the leading cause of cancer death in women worldwide. The microtubule-associated protein light chain 3B (MAP1LC3B) and adaptor sequestosome 1 (SQSTM1) are two major markers for autophagy. Increased protein levels of MAP1LC3B and SQSTM1 are considered to be causes of autophagy inhibition or activation in various types of cancers. However, the roles of MAP1LC3B and SQSTM1 in breast cancer are still not clear. Using a tissue microarray from 274 breast invasive ductal carcinoma (IDC) patients, we found that tumor tissues showed higher protein levels of MAP1LC3B and cytoplasmic SQSTM1 in comparison to those in adjacent normal tissues. Moreover, high levels of MAP1LC3B were associated with better survival, including disease-specific survival and disease-free survival (DFS) in IDC patients. Furthermore, high co-expression of MAP1LC3B and SQSTM1 was significantly associated with better DFS in IDC patients. Astonishingly, the autophagy inhibitor accumulated the protein levels of MAP1LC3B/SQSTM1 and enhanced the cytotoxic effects of cisplatin and paclitaxel in MCF7 and BT474 breast cancer cell lines, implying that autophagy inhibition might result in poor prognosis and chemosensitivity in IDC. Taken together, high co-expression of MAP1LC3B and SQSTM1 might serve as a potential diagnostic and prognostic biomarker for IDC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.