Stable ferroelectricity with high transition temperature in nanostructures is needed for miniaturizing ferroelectric devices. Here, we report the discovery of the stable in-plane spontaneous polarization in atomic-thick tin telluride (SnTe), down to a 1-unit cell (UC) limit. The ferroelectric transition temperature T(c) of 1-UC SnTe film is greatly enhanced from the bulk value of 98 kelvin and reaches as high as 270 kelvin. Moreover, 2- to 4-UC SnTe films show robust ferroelectricity at room temperature. The interplay between semiconducting properties and ferroelectricity in this two-dimensional material may enable a wide range of applications in nonvolatile high-density memories, nanosensors, and electronics.
2D SnTe films with a thickness of as little as 2 atomic layers (ALs) have recently been shown to be ferroelectric with in‐plane polarization. Remarkably, they exhibit transition temperatures (Tc
) much higher than that of bulk SnTe. Here, combining molecular beam epitaxy, variable temperature scanning tunneling microscopy, and ab initio calculations, the underlying mechanism of the Tc
enhancement is unveiled, which relies on the formation of γ‐SnTe, a van der Waals orthorhombic phase with antipolar inter‐layer coupling in few‐AL thick SnTe films. In this phase, 4n − 2 AL (n = 1, 2, 3…) thick films are found to possess finite in‐plane polarization (space group Pmn21), while 4n AL thick films have zero total polarization (space group Pnma). Above 8 AL, the γ‐SnTe phase becomes metastable, and can convert irreversibly to the bulk rock salt phase as the temperature is increased. This finding unambiguously bridges experiments on ultrathin SnTe films with predictions of robust ferroelectricity in GeS‐type monochalcogenide monolayers. The observed high transition temperature, together with the strong spin‐orbit coupling and van der Waals structure, underlines the potential of atomically thin γ‐SnTe films for the development of novel spontaneous polarization‐based devices.
The interplay between disorder and superconductivity is a subtle and fascinating phenomenon in quantum many body physics. The conventional superconductors are insensitive to dilute nonmagnetic impurities, known as the Anderson's theorem 1 .Destruction of superconductivity and even superconductor-insulator transitions 2-10 occur in the regime of strong disorder. Hence disorder-enhanced superconductivity is rare and has only been observed in some alloys or granular states 11-17 . Because of the entanglement of various effects, the mechanism of enhancement is still under debate.Here we report well-controlled disorder effect in the recently discovered monolayer
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.