This study was designed to determine whether nutritional folate depletion exerts hepatic oxidative stress in relation to elevated plasma homocysteine. To mimic various extents of folate depletion status in vivo, male Wistar rats were fed an amino acid-defined diet containing either 8 (control), 2, 0.5, or 0 mg folic acid/kg diet. After a 4-wk feeding period, the plasma and hepatic folate concentrations of the rats decreased significantly with each decrement of dietary folate. Folate depletion did not significantly affect two major liver antioxidants: reduced glutathione and alpha-tocopherol. Conversely, folate depletion decreased Cu-Zn superoxide dismutase and glutathione peroxidase activities, but had no effect on catalase activity in liver homogenates. Lipid peroxidation products, as measured by thiobarbituric acid-reactive substances, were significantly higher in livers of folate-depleted rats than in those of the controls. This occurrence of hepatic oxidative stress in folate-depleted rats was confirmed by demonstrating an increased susceptibility of livers of folate-depleted rats to lipid peroxidation induced by additional H2O2 or Fe(2+) treatments compared with the controls. Decreasing dietary folate intake resulted in graded increases in plasma homocysteine concentrations of folate-depleted rats. Elevated plasma homocysteine and decreased plasma and hepatic folate concentrations in folate-depleted rats were all strongly and significantly correlated with increased liver lipid peroxidation (/r/ > or = 0.58, P < 0.0003). These data demonstrate that folate depletion and elevated plasma homocysteine promote oxidative stress in rat livers.
Both increased copper and reduced folate levels are commonly found in patients with liver diseases. To better understand the mechanisms by which folate deprivation interacts with copper to contribute to hepatocellular toxicity, rat primary hepatocytes were isolated, cultured in folate-deprived (FD) RPMI medium, and assayed for cytotoxicity after copper sulfate (CuSO4) exposure. MTT measurement and trypan blue assay showed that elevated CuSO4 levels aggravated cell death of folate-deprived but not folate-sufficient hepatocytes. CuSO4 treatment increased the levels of intracellular reactive oxygen species (ROS) by 3 times in FD hepatocytes and tripled the proportion of FD hepatocytes with hypodiploid DNA contents. Measurement of membrane phosphatidylserine exposure indicated that the CuSO4-mediated toxicity in FD hepatocytes was not mediated by the apoptotic pathway. Real-time polymerase chain reaction (PCR) analysis revealed that CuSO4 treatment did not increase the occurrence of a 4834-bp mtDNA (mtDNA4834) deletion in FD hepatocytes. Preincubation of FD hepatocytes with various concentrations of folate prior to CuSO4 treatment did not modulate the mtDNA4834 deletion. Taken together, the data suggest that elevated copper levels potentiate cell death of folate-deprived hepatocytes, which is primarily associated with increased ROS generation and chromosomal DNA loss. The cytotoxicity exerted by folate depletion and elevated copper levels, however, is not due to apoptosis or accumulated mtDNA4834 deletions in primary hepatocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.