Microbial rhodopsins (M-Rho) are found in Archaea, Bacteria and some species of Eukarya and serve as light-driven ion pumps or mediate phototaxis responses in various biological systems. We previously reported an expression system using a highly expressible mutant, D94N-HmBRI (HEBR) from Haloarcula marismortui, as a leading tag to assist in the expression of membrane proteins that were otherwise difficult to express in E. coli. In this study, we show a universal strategy for the expression of two M-Rho proteins, either the same or different types, as one fusion protein with the HEBR system. One extra transmembrane domain was engineered to the C-terminal of HEBR to express another target M-Rho. The average expression yield in this new system reached a minimum of 2 mg/L culture, and the maximum absorbance of the target M-Rho remained unaltered in the fusion forms. The fusion protein showed a combined absorbance spectrum of a lone HEBR and target M-Rho. The function of the target M-Rho was not affected after examination with functional tests, including the photocycle and proton pumping activity of fusion proteins. In addition, an otherwise unstable sensory rhodopsin, HmSRM, showed the same or even improved stability under various temperatures, salt concentrations, and a wide range of pH conditions. This HEBR platform provides the possibility to construct multi-functional, stoichiometric and color-tuning fusion proteins using M-Rho from haloarchaea.
Halorhodopsin (HR) is a seven-transmembrane retinylidene protein from haloarchaea that is commonly known to function as a light-driven inward chloride pump. However, previous studies have indicated that despite the general characteristics that most HRs share, HRs from distinct species differ in many aspects. We present indium-tin-oxide-based photocurrent measurements that reveal a light-induced signal generated by proton release that is observed solely in NpHR via purified protein-based assays, demonstrating that indeed HRs are not all identical. We conducted mutagenesis studies on several conserved residues that are considered critical for chloride stability among HRs. Intriguingly, the photocurrent signals were eliminated after specific point mutations. We propose an NpHR light-driven, cytoplasmic-side proton circulation model to explain the unique light-induced photocurrent recorded in NpHR. Notably, the photocurrent and various photocycle intermediates were recorded simultaneously. This approach provides a high-resolution method for further investigations of the proton-assisted chloride translocation mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.