According to the characteristics of coherent structures in near-wall turbulence, an accurate extraction and verification method is developed based on wavelet transform (WT) and correlation analysis in this paper. At first, the fluid field of a turbulent boundary layer is measured precisely in a gravitational low-speed water tunnel. On the basis of the distribution of the coherent structures, velocity data of three test points are selected and analyzed, whose dimensionless heights are 20.8, 33.5, and 42.6. According to the frequency range of power spectrum density (PSD), coherent and incoherent structures are both extracted from the original signals using continuous and orthogonal wavelet transforms. To confirm the validity of the extracted signals, the probability density function (PDF) of each extracted signal is calculated. The result demonstrates that the incoherent structures obey the Gaussian distribution, while the coherent structures deviate from the Gaussian distribution. The PDFs of the coherent structures and the original signals are similar, which shows that the coherent structures make most contributions to the turbulence. For further verification, a correlation parameter between coherent and incoherent structures is defined, which evidently proves the validity of the extraction method in this paper.
Superhydrophobic surfaces with micro- and nano-scale structures are conducible to maintaining a gas layer where prominent slippage effect exists. It has been demonstrated that the drag reduction of superhydrophobic surface increases with growing the fraction of the gas-water interface and the rising of the thickness of gas layer. Whereas a large thick gas layer on the superhydrophobic surface collapses easily under tangential water flow. Here, we present a new method to maintain large-scale gas layer by creating hydrophilic patterns at the superhydrophobic surface, on which the binding force of air on the solid surface can be caused by wettability difference. Through testing the states of gas layer trapped on surfaces with wettability differences equal to 54.8, 84.7, 103.6 and 144.0 in apparent contact angle, respectively, the conditions of maintaining gas layer are mainly considered. We demonstrate that the critical velocity, over which the gas layer begins to collapse under the tangential water flow, is positively correlated with the thickness of the gas layer and the wettability difference between the superhydrophobic area and hydrophilic area, however, this is negatively correlated with the width of the gas layer in the crosswise direction. It is noteworthy that even a centimeter-scale gas layer can be kept steady in ~0.9 m/s through this method. Furthermore, an obvious slip velocity up to ~25% of bulk velocity is observed at the gas-water interface, through measuring the velocity profile above the 0.6 cm-long, 0.5 cm-wide and 0.15 cm-thick gas layer by using the PIV technology. We anticipate that this novel method of gas entrapment under water will effectively widen the applications of superhydrophobic surfaces for drag reduction.
When ultrasound propagates in a liquid alloy, nonlinear effect takes place such as cavitation effect and acoustic streaming, which accelerates the solute and thermal transportation during alloy solidification, and consequently, improves the solidification microstructures and mechanical properties of the metallic alloy. Therefore, it is significant to investigate the ultrasound propagation characteristics in liquid. Here, by choosing water as a model transparent material, the acoustic fields and flow fields induced by 20 and 490 kHz ultrasounds are investigated by numerical simulation, and the effects of frequency and ultrasonic horn radius are studied. Firstly, the simulation results demonstrate that the sound pressure under 20 kHz ultrasound decreases obviously along the ultrasonic propagation direction, and the maximum of sound pressure value is equal to the initial pressure. In this case, the cavitation effect only occurs in the region close to the ultrasonic horn. By contrast, when the ultrasonic frequency increases to 490 kHz, the sound pressure is higher than that of 20 kHz ultrasound, and displays periodical vibration characteristic along the wave propagation direction. The cavitation volume correspondingly expands to a large extent with a regular striped distribution. It can also be found that increasing the ultrasonic horn radius under 20 and 490 kHz ultrasounds can effectively promote the sound pressure level in water, and hence leads to the remarkable enlargement of cavitation volume. Secondly, the calculated results of flow field indicate that the streamlines in water are similar under the two ultrasounds with different frequencies. A jet produced by the center of horn spreads down and divergences to both sides after reaching the bottom. For both frequencies as the horn radius increases, the radius of jet increases and the average velocity in water first increases and then decreases, whose maximum value appears when the horn radius is 40 mm. Meanwhile, the average velocity under 20 kHz ultrasound is larger than that under 490 kHz ultrasound for each horn radius. Finally, particle image velocimetry method is employed to measure the velocity field in water. Both the positions of eddy and the velocity distribution are the same as the simulation results, which verifies the reliability of the present theoretical calculation model. The scenario in this work is analogous to the acoustic field and the flow field in liquid alloy, which is beneficial for the design of parameter optimization during ultrasonic processing in alloy solidification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.