Lignin is highly branched phenolic polymer and accounts 15-30% by weight of lignocellulosic biomass (LCBM). The acceptable molecular structure of lignin is composed with three main constituents linked by different linkages. However, the structure of lignin varies significantly according to the type of LCBM, and the composition of lignin strongly depends on the degradation process. Thus, the elucidation of structural features of lignin is important for the utilization of lignin in high efficient ways. Up to date, degradation of lignin with destructive methods is the main path for the analysis of molecular structure of lignin. Spectroscopic techniques can provide qualitative and quantitative information on functional groups and linkages of constituents in lignin as well as the degradation products. In this review, recent progresses on lignin degradation were presented and compared. Various spectroscopic methods, such as ultraviolet spectroscopy, Fourier-transformed infrared spectroscopy, Raman spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy, for the characterization of structural and compositional features of lignin were summarized. Various NMR techniques, such as 1 H, 13 C, 19 F, and 31 P, as well as 2D NMR, were highlighted for the comprehensive investigation of lignin structure. Quantitative 13 C NMR and various 2D NMR techniques provide both qualitative and quantitative results on the detailed lignin structure and composition produced from various processes which proved to be ideal methods in practice.
The subcellular localization and chemical forms of copper in castor (Ricinus communis L.) seedlings grown in hydroponic nutrient solution were identified by chemical extraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. The wild castor seeds were harvested from an abandoned copper mine in Tonglu Mountain, Daye City of Hubei Province, China. The results revealed that (1) the seedlings grew naturally in MS liquid medium with 40.00 mg kg(-1) CuSO4, in which the seedling growth rate and biomass index were 0.14 and 1.23, respectively, which were the highest values among all the treatments. The copper content in castor seedlings increased along with elevated CuSO4 concentration in the medium, reaching a maximum value of 16 570.12 mg kg(-1)(DW) when exposed to 60.00 mg L(-1) CuSO4, where 91.31% of the copper was accumulated in roots. (2) The copper existed in various chemical forms in the roots of the castor seedlings. Copper of 67.66% was extracted from the components of cell walls, such as exchangeable acidic polar compounds, cellulose and lignin, protein and pectin, and less concentrated in cell cytoplasm and nuclei. (3) Furthermore, the root cell walls were thickened when the castor seedlings exposed to CuSO4, with a large amount of high-density electron bodies, attached to the thickened cell walls. In the cell walls, most copper was bound to the carboxyl (-COOH) and hydroxyl (-OH) groups of acidic polar compounds, cellulose, hemicellulose, and polysaccharides. The conclusion showed that castor exhibited a strong tolerance to copper, the copper were accumulated mainly in the root cell, the root cell walls of castor were the major location of patience and detoxification in copper stress.
To assess the potential cytostatic properties of the thulium(III)-arsenazo III complex as a probe of rare earth complex antitumor drugs, the interaction information of the thulium(III)-arsenazo III complex with DNA was obtained by using spectroscopy, viscosity measurements, and voltammetric methods. The thermodynamic functions demonstrated that the binding constants of the thulium(III)-arsenazo III complex with DNA were Kθ298.15K = 4.84 × 106 L·mol−1 and Kθ308.15K = 4.48 × 106 L·mol−1, and the binding process was enthalpy driven. The increase in relative viscosity of DNA with the addition of the thulium(III)-arsenazo III complex and the results from Scatchard and voltammetric methods showed that the interaction mode between the thulium(III)-arsenazo III complex and DNA was groove binding along with weak intercalative binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.