In the paper, under 5.6 GPa and 1250−1450 ℃, the Ib-ype diamond single crystals chosen as the seed crystals with different sizes, are synthesized in a cubic anvil at high pressure and high temperature. High-purity Fe-Ni-Co solvents are chosen as the catalysts. High-purity graphite powder (99.99%, purity) is selected as the carbon source. Hexahedral abrasive grade high-quality diamonds of 0.8 mm, 1.5 mm or 2.2 mm in diameter are chosen as seed crystals. The effects of seed crystal size on the growth of gem-diamond single crystal are studied in detail. Firstly, the influence of the change of seed size on the cracking of diamond single crystal is investigated. The crystal growth law of increasing the probability of cracking crystal with larger seed crystal is obtained. It can be attributed to the following two points. i) The residual cross section at the separation of the main crystal from the larger seed crystal is too large, thus reducing the overall compressive strength of the crystal. ii) The growth rate of the diamond crystal synthesized by larger seed crystal is too fast, which leads to the increase of impurities and defects and the decrease of compressive strength of the crystal. The decrease of crystal compressive strength leads to cracks in diamond crystals during cooling and depressurizing. Secondly, in the growth time of 25 hours, the relationships between the growth time and the limit growth rate of the diamond single crystals synthesized by choosing three sizes of seed crystals are investigated. The results show that the high-quality single crystal synthesis efficiency can be improved and the synthesis period can be shortened by selecting large seed crystals. This is because the size of the seed crystal becomes larger at each stage of crystal growth, resulting in the enhancement of the ability of diamond single crystal to receive carbon, so that high-quality diamond single crystals can be grown at a faster growth rate. Thirdly, with the help of scanning electron microscope or optical microscope, we calibrate the surface morphologies of diamond single crystals grown with different-size seed crystals. Using the seed crystals of 0.8 mm, 1.5 mm or 2.2 mm in diameter, high-quality diamond single crystals with smooth surfaces can be synthesized. However, with the increase of seed crystal in size, the surface flatness of the grown crystals tends to decrease and the possibility with which surface defects occur and string inclusions increase. The growth rate of high-quality diamond single crystals grown with larger seed crystals must be strictly controlled. Finally, the N impurity content values of diamond single crystals grown with different seed crystals in size are characterized by Fourier transform infrared measurement. The results show that the N impurity content of the crystal increases with the diamond growing rapidly by selecting larger seed crystal.
The interaction potentials between electron and atom play an important role in electron-atom scattering. Using three potential models, the absolute differential cross section has been calculated by the second Born approximation theory. Results show that these model potentials are successful in the laser-assisted e-Ar scattering system. The influence of static potential, exchange potential and polarization potential on the absolute differential cross section is also analyzed and discussed.
The absolute differential cross sections of e-Ar scattering in laser field are calculated employing the second Born approximation with the static screen potential including polarization potential and the single static screen potential in the special scattering geometry that the incident electron beam is parallel to the polarization direction of laser field. The second Born approximation gives better results than the low-frequency whem formula when compared with the experimental data, and it is found that the electron-atom polarization potential plays an important role in laser-assisted electron-atom scattering.
Elastic scattering properties of the ultracold interaction for the triplet state of 133Cs and 85Rb atoms are studied using two kinds of potentials by the same phase Φ. One is the interpolation potential, and another is Lennard–Jones potential (LJ12,6). The radial Schrödinger equation is also solved using two computational methods, the semiclassical method (WKB), and the Numerov method. Our results are found to be in an excellent agreement with the more recent theoretical values. It shows that the two potentials and methods are applicable for studying ultracold collisions between the mixing alkali atoms.
The elastic scattering properties for collisions between ultracold 23 Na and 39 K atoms in the singlet state are investigated. Based on the recent theoretical and experimental results, the improved hybrid potential is presented for the singlet 𝑋 1 ∑︀ + 𝑔 ground state of NaK. By means of the Numerov and semiclassical methods, the values of the s-wave scattering length 𝑎 for the singlet state are calculated to be 33.3757𝑎0 and 37.9399𝑎0, respectively.Pronounced shape resonances appear for the 𝑙 = 1 partial wave for the 𝑋 1 ∑︀ + 𝑔 state. In addition, the s-wave scattering cross section, total cross section and energy positions of shape resonances for the 𝑋 1 ∑︀ + 𝑔 state are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.