A convenient template-and surfactant-free strategy has been developed to prepare porous hierarchical Ni nanostructures by directly calcining the nickel-based flower-like precursor in Ar. The precursor is preformed by refluxing the solution of nickel nitrate and the co-precipitators of hexamethylenetetramine and oxalic acid at 100 C for 6 h. The unique Ni nanostructures are composed of porous sheets of several nanometers in thickness with a wide pore size distribution of 5-100 nm, with a Brunauer-Emmett-Teller specific surface area up to 24.5 m 2 g À1 . The formation process has been in situ examined by thermogravimetry-differential scanning calorimetry-mass spectroscopy, which illuminates the continuous generation of Ni species with the simultaneous release of gaseous species from decomposition and/or reduction of the precursor. Coupled with the good soft ferromagnetism, the porous Ni nanostructures with high surface area have great potential as a magnetically separable catalyst, as demonstrated in the excellent performance for the selective hydrogenation of acetophenone to 1-phenylethanol at 100 C.
With enormous interfacial area for particle collection, microbubbles exhibit great application prospect in the mineral flotation. Under certain ionic strength, microbubbles can be produced continuously in the microbubble column without extra reagent addition. In this work, multiphase flow characteristics (Sauter mean diameter, bubble size distribution, gas holdup & interfacial area) were studied systematically with variables including the salt type, salt concentration, and operating conditions. Based on mathematical model, critical coalescence concentration was determined for each investigated salt. According to experimental results, a mathematical correlation was established between the Sauter mean diameter and ionic strength. For the formation of microbubble system, the lowest ionic strength was approximately 0.5 mol/L. Multiphase flow characteristics in the microbubble column depended highly on the ionic strength. The interfacial area and gas holdup increased by 38 times and more than 3 times respectively, with the ionic strength of Al2(SO4)3 rising from 0 to 1.5 mol/L. The critical coalescence concentration ranged from 0.037 mol/L (Al2(SO4)3) to 0.517 mol/L (NaCl), which correlated with the ionic strength of each salt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.