Multi-resonance induced by boron and nitrogen atoms in opposite resonance positions endows a thermally activated delayed fluorescence (MR-TADF) emitter with a strikingly small full width at half maximum of only 26 nm and excellent photoluminescence quantum yield of up to 97.48 %. The introduction of a carbazole unit in the para position of the B-substituted phenyl-ring can significantly boost up the resonance effect without compromising the color fidelity, subsequently enhancing the performances of the corresponding pure blue TADF-OLED, with an outstanding external quantum efficiency (EQE) up to 32.1 % and low efficiency roll-off, making it one of the best TADF-OLEDs in the blue region to date. Furthermore, utilizing this material as host for a yellow phosphorescent emitter, the device also shows a significantly reduced turn-on voltage of 3.2 V and an EQE of 22.2 %.
Circularly polarized organic light‐emitting diodes (CP‐OLEDs) are particularly favorable for the direct generation of CP light, and they demonstrate a promising application in 3D display. However, up to now, such CP devices have suffered from low brightness, insufficient efficiency, and serious efficiency roll‐off. In this study, a pair of octahydro‐binaphthol (OBN)‐based chiral emitting enantiomers, (R/S)‐OBN‐Cz, are developed by ingeniously merging a chiral source and a luminophore skeleton. These chirality–acceptor–donor (C–A–D)‐type and rod‐like compounds concurrently generate thermally activated delayed fluorescence with a small ΔEST of 0.037 eV, as well as a high photoluminescence quantum yield of 92% and intense circularly polarized photoluminescence with dissymmetry factors (|gPL|) of ≈2.0 × 10−3 in thin films. The CP‐OLEDs based on (R/S)‐OBN‐Cz enantiomers not only display obvious circularly polarized electroluminescence signals with a |gEL| of ≈2.0 × 10−3, but also exhibit superior efficiencies with maximum external quantum efficiency (EQEmax) up to 32.6% and extremely low efficiency roll‐off with an EQE of 30.6% at 5000 cd m−2, which are the best performances among the reported CP devices to date.
CP-OLEDs with two series of chiral iridium(iii) complexes based on four-membered Ir–S–P–S chelating rings and chiral BINOL-based derivatives show excellent electroluminescence performances with obvious CPEL properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.