Chiral materials with circularly polarized luminescence (CPL) are potentially applicable for 3D displays. In this study, by decorating the pyridinyl‐helicene ligands with ‐CF3 and ‐F groups, the platinahelicene enantiomers featured superior configurational stability, as well as high sublimation yield (>90 %) and clear CPPL properties, with dissymmetry factors (|gPL|) of approximately 3.7×10−3 in solution and about 4.1×10−3 in doped film. The evaporated circularly polarized phosphorescent organic light‐emitting diodes (CP‐PhOLEDs) with two enantiomers as emitters exhibited symmetric CPEL signals with |gEL| of (1.1–1.6)×10−3 and decent device performances, achieving a maximum brightness of 11 590 cd m−2, a maximum external quantum efficiency up to 18.81 %, which are the highest values among the reported devices based on chiral phosphorescent PtII complexes. To suppress the effect of reverse CPEL signal from the cathode reflection, the further implementation of semitransparent aluminum/silver cathode successfully boosts up the |gEL| by over three times to 5.1×10−3.
CP-OLEDs with two series of chiral iridium(iii) complexes based on four-membered Ir–S–P–S chelating rings and chiral BINOL-based derivatives show excellent electroluminescence performances with obvious CPEL properties.
Combining the chemistry of metal−organic frameworks (MOFs) and covalent organic frameworks (COFs) can bring new opportunities for the design of advanced materials with enhanced tunability and functionality. Herein, we constructed two COFs based on Ni−bis(dithiolene) units and imine bonds, representing a bridge between traditional MOFs and COFs. The Ni− bis(dithiolene)tetrabenzaldehyde as the 4-connected linker was initially synthesized, which was further linked by 4-connected tetra(aminophenyl)pyrene (TAP) or 3connected tris(aminophenyl)amine (TAA) linkers into two COFs, namely, Ni-TAP and Ni-TAA. Ni-TAP shows a two-dimensional sql network, while TAA is a twofold interpenetrated framework with an ffc topology. They both exhibit a high Brunauer−Emmett−Teller surface area (324 and 689 m 2 g −1 for Ni-TAP and Ni-TAA, respectively), a fairly good conductivity (1.57 × 10 −6 and 9.75 × 10 −5 S m −1 for Ni-TAP and Ni-TAA, respectively), and high chemical stability (a stable pH window of 1−14 for Ni-TAA). When applied in lithium metal batteries as an intermediate layer for guiding the uniform Li electrodeposition, Ni-TAP and Ni-TAA displayed impressive lithiophilicity and high Li-ion conductivity, enabling the achievement of smooth and dense Li deposition with a clear columnar morphology and stable Li plating/stripping behaviors with high Li utilization, which is anticipated to pave the way to upgrade Li metal anodes for application in high-energy-density battery systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.