Electrochemically up-regulated surface-enhanced Raman spectroscopy (E-SERS) effectively increases Raman signal intensities. However, the instrumental requirements and the conventional measurement conditions in an electrolyte cell have hampered its application in fast and on-site detection. To circumvent the inconveniences of E-SERS, we propose a self-energizing substrate that provides electrical potential by converting film deformation from a finger press into stored electrical energy. The substrate combines an energy conversion film and a SERS-active Ag nanowire layer. A composite film prepared from a piezoelectric polymer matrix and surface-engineered rGO that simultaneously presents high permittivity and low dielectric loss is the key component herein. Using our substrate, increased E-SERS signals up to 10 times from a variety of molecules were obtained in the open air. Various tests on real-life sample surfaces demonstrated the potentials of the substrate in fast on-site detection.
The determinations of water status incorporated in hydrous minerals are of considerable significances in geoscience fields. Coincidentally, the aqueous sensitivity of terahertz radiation has motivated numerous explorations in several cross-domain applications. Terahertz time-domain spectroscopy is employed as a major probing technique coupling of traditional detecting methods to uncover the mask of water status in copper sulfate pentahydrate as well as mineral quartz in this article. Based on the quantitative identification of water status in copper sulfate pentahydrate, the water incorporated in mineral quartz is verified qualitatively. Notable differences of optical constants originating from the water content are obtained for copper sulfate pentahydrate and mineral quartz. These present works indicate that terahertz technology can be considered as a promising method to satisfy the ever-increasing requirements in hydrous mineral analyses.
It is a great challenge to create a needle-like field with properties of long beam length, narrow lateral width, uniformity, and high optical efficiency. Here we show a method that can realize these properties all at once. The key element is a 90° apex-angle concave conical mirror. By using this condenser along with a radially polarized incident beam of a specific field distribution, we numerically created a super slim, uniform, pure needle-like axially polarized field. This axially polarized field has a length of 50,000λ along the optical axis, and its lateral width still maintains a minimum 0.36λ size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.