Urban land subsidence threatens the safety of urban buildings and people’s lives. The time series interferometric synthetic aperture radar (InSAR) technology can provide us with large-area, high-resolution, and high-precision ground deformation monitoring. In this study, the time series InSAR technology and the strategy with long- and short-time baseline networking are used to obtain the surface deformation along the line of sight of Nanchang City based on the six-year (from December 2015 to December 2021) Sentinel-1 data. Longer datasets and better baseline strategies allow us to obtain more stable deformation results of Nanchang City than other researchers. The results of surface deformation show that the overall surface of Nanchang City is stable, but there are several obvious subsidence funnels. We carried out a field survey on four areas with significant surface subsidence. We considered that these subsidence areas may be related to soil compaction, building construction, and groundwater extraction. Based on the surface deformation results around the subway line, we analyzed the impact of subway construction on the surface along the line and identified the sections that need to be focused on by the managers to prevent the deformation area from affecting the surrounding buildings and subway line operation safety.
The azimuth displacement derived by pixel offset tracking (POT) or multiple aperture InSAR (MAI) measurements is usually used to characterize the north-south coseismic deformation caused by large earthquakes (M > 6.5), but its application in the source parameter inversion of moderate-magnitude earthquakes (~M 6.0) is rare due to the insensitive observation accuracy. Conventional line-of-sight (LOS) displacements derived by the Interferometric Synthetic Aperture Radar (InSAR) have limited ability to constrain the source parameters of the earthquake with near north-south striking. On 21 May 2021, an Mw 6.1 near north-south striking earthquake occurred in Yangbi County, Yunnan Province, China. In this study, we derive both the coseismic LOS displacement and the burst overlap interferometry (BOI) displacement from the Sentinel-1 data to constrain the source model of this event. We construct a single-segment fault geometry and estimate the coseismic slip distribution by inverting the derived LOS and BOI-derived azimuth displacements. Inversion results show that adding the BOI-derived azimuth displacements to source modeling can improve the resolution of the slip model by ~15% compared with using the LOS displacements only. The coseismic slip is mainly distributed 2 to 11 km deep, with a maximum slip of approximately 1.1 m. Coulomb stress calculation shows a maximum Coulomb stress increment of ~0.05 Mpa at the north-central sub-region of the Red River Fault. In addition, there is a small Coulomb stress increase at the Southern end of the Weixi-Weishan fault. The potential seismic risks on the Weixi-Weishan and Northwest section of the Red River faults should be continuously monitored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.