A novel crystal configuration of sandwiched S-Mo-Se structure (Janus SMoSe) at the monolayer limit has been synthesized and carefully characterized in this work. By controlled sulfurization of monolayer MoSe 2 the top layer of selenium atoms are substituted by sulfur atoms while the bottom selenium layer remains intact. The peculiar structure of this new material is systematically investigated by Raman, photoluminescence and X-ray photoelectron spectroscopy and confirmed by transmission-electron microscopy and time-of-flight secondary ion mass spectrometry.Density-functional theory calculations are performed to better understand the Raman vibration modes and electronic structures of the Janus SMoSe monolayer, which are found to correlate well with corresponding experimental results. Finally, high basal plane hydrogen evolution reaction (HER) activity is discovered for the Janus monolayer and DFT calculation implies that the activity originates from the synergistic effect of the intrinsic defects and structural strain inherent in the Janus structure.Keywords: Janus SMoSe, sulfurization, HER Since the discovery of graphene in 2004 1 , two-dimensional (2D) materials have been attracting increasing attention due to the many novel properties originating from the bulk to monolayer transition. Among the 2D family, transition metal dichalcogenides (TMDs)
Catalysis by single isolated atoms of precious metals has attracted much recent interest, as it promises the ultimate in atom efficiency. Most previous reports are on reducible oxide supports. Here we show that isolated palladium atoms can be catalytically active on industrially relevant g-alumina supports. The addition of lanthanum oxide to the alumina, long known for its ability to improve alumina stability, is found to also help in the stabilization of isolated palladium atoms. Aberration-corrected scanning transmission electron microscopy and operando X-ray absorption spectroscopy confirm the presence of intermingled palladium and lanthanum on the g-alumina surface. Carbon monoxide oxidation reactivity measurements show onset of catalytic activity at 40°C. The catalyst activity can be regenerated by oxidation at 700°C in air. The high-temperature stability and regenerability of these ionic palladium species make this catalyst system of potential interest for low-temperature exhaust treatment catalysts.
A simple, general, and rigorous scheme for adapting permutation symmetry in molecular systems is proposed and tested for fitting global potential energy surfaces using neural networks (NNs). The symmetry adaptation is realized by using low-order permutation invariant polynomials (PIPs) as inputs for the NNs. This so-called PIP-NN approach is applied to the H + H2 and Cl + H2 systems and the analytical potential energy surfaces for these two systems were accurately reproduced by PIP-NN. The accuracy of the NN potential energy surfaces was confirmed by quantum scattering calculations.
Motivated by the long-term goal of understanding vectorial biological processes such as proton transport (PT) in biomolecular ion pumps, a number of developments were made to establish combined quantum mechanical/molecular mechanical (QM/MM) methods suitable for studying chemical reactions involving significant charge separation in the condensed phase. These developments were summarized and discussed with representative problems. Specifically, free energy perturbation and boundary potential methods for treating long-range electrostatics were implemented to test the robustness of QM/MM results for protein systems. It was shown that consistent models with sufficient sampling were able to produce quantitatively satisfactory results, such as pK a for titritable groups in the interior of T4-lysozyme, while an inconsistent treatment of electrostatics or lack of sufficient sampling may produce incorrect results. Modifications were made to an approximate density functional theory (SCC-DFTB) to improve the description of proton affinity and hydrogen-bonding, which are crucial for the treatment of PT in polar systems. Test calculations on water autoionization showed clearly that both improvements are necessary for quantitatively reliable results. Finally, the newly established SCC-DFTB/MM-GSBP protocol was used to explore mechanistic issues in carbonic anhydrase (CA). Preliminary results suggest that PT in CA occurs mainly through short water wires containing two water molecules in a thermally activated fashion. Although longer water wires occur with similar frequencies, PT along those pathways, on average, has substantially higher barriers, a result not expected based on previous studies. The fluctuations of water molecules peripheral to the water wire were found to make a larger impact on the PT energetics compared to polar protein residues in the active site, which are largely pre-organized and therefore have less tendency to reorganize during the reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.