We present SPARC: Simulation Package for Ab-initio Real-space Calculations. SPARC can perform Kohn-Sham density functional theory calculations for isolated systems such as molecules as well as extended systems such as crystals and surfaces, in both static and dynamic settings. It is straightforward to install/use and highly competitive with stateof-the-art planewave codes, demonstrating comparable performance on a small number of processors and increasing advantages as the number of processors grows. Notably, SPARC brings solution times down to a few seconds for systems with O(100 − 500) atoms on largescale parallel computers, outperforming planewave counterparts by an order of magnitude and more.
This paper presents techniques for Fock matrix construction that are designed for high performance on shared and distributed memory parallel computers when using Gaussian basis sets. Four main techniques are considered. (1) To calculate electron repulsion integrals, we demonstrate batching together the calculation of multiple shell quartets of the same angular momentum class so that the calculation of large sets of primitive integrals can be efficiently vectorized. (2) For multithreaded summation of entries into the Fock matrix, we investigate using a combination of atomic operations and thread-local copies of the Fock matrix. (3) For distributed memory parallel computers, we present a globally accessible matrix class for accessing distributed Fock and density matrices. The new matrix class introduces a batched mode for remote memory access that can reduce the synchronization cost. (4) For density fitting, we exploit both symmetry (of the Coulomb and exchange matrices) and sparsity (of 3-index tensors) and give a performance comparison of density fitting and the conventional direct calculation approach. The techniques are implemented in an open-source software library called GTFock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.