The aim of this study was to investigate the role of the amino acid permease gene AAP6 in regulating phloem amino acid composition and then to determine the effects of this altered diet on aphid performance. A genotype of Arabidopsis thaliana (L.) was produced in which the function of the amino acid permease gene AAP6 (At5g49630) was abolished. Plants homozygous for the insertionally inactivated AAP6 gene had a significantly larger mean rosette width than the wild type and a greater number of cauline leaves. Seeds from the aap6 mutant were also significantly larger than those from the wild-type plants. Sieve element (SE) sap was collected by aphid stylectomy and the amino acids derivatized, separated, and quantified using Capillary Electrophoresis with Laser Induced Fluorescence (CE-LIF). In spite of the large variation across samples, the total amino acid concentration of SE sap of the aap6 mutant plants was significantly lower than that of the wild-type plants. The concentrations of lysine, phenylalanine, leucine, and aspartic acid were all significantly lower in concentration in the aap6 mutant plants compared with wild-type plants. This is the first direct demonstration of a physiological role for an amino acid transporter in regulating SE composition in vivo. The amino acid availability in sieve element sap is thought to be the major limiting factor for aphid growth and reproduction. Despite the changes in their diet, the aphid Myzus persicae (Sulzer) displayed only small changes in feeding behaviour on mutant plants when measured using the Electronic Penetration Graph (EPG) technique. Salivation by the aphid into the SE (E1 phase) was increased on mutant plants but there was no significant effect on other feeding EPG behaviours, or in the rate of honeydew production. Consistent with the small effect on aphid feeding behaviour, there was only a small effect of reduced sieve element amino acid concentration on aphid reproduction. The data are discussed in relation to the regulation of phloem composition and the role of phloem amino acids in regulating aphid performance.
We have used high-sensitivity capillary electrophoresis coupled to a laser-induced fluorescence detection method to quantify 16 amino acids in wheat (Triticum aestivum) sieve tube (ST) samples as small as 2 nL collected by severing the stylets of feeding aphids. The sensitivity of the method was sufficient to determine a quantitative amino acid profile of individual STs without the need to bulk samples to produce larger volumes for analysis. This allowed the observation of the full range of variation that exists in individual STs. Some of the total concentrations of amino acids recorded are higher than those reported previously. The results obtained show variation in the concentrations of phenylalanine (Phe), histidine/valine (His/Val), leucine/ isoleucine (Leu/Ile), arginine, asparagine, glutamine, tyrosine (Tyr), and lysine (Lys) across the ST samples. These could not be explained by plant-to-plant variation. Statistical analyses revealed five analytes (Tyr, Lys, Phe, His/Val, and Leu/Ile) that showed striking covariation in their concentrations across ST samples. A regression analysis revealed a significant relationship between the concentrations of Tyr, Lys, Phe, Leu/Ile, His/Val, asparagine, arginine, and proline and the time of collection of ST samples, with these amino acids increasing in concentration during the afternoon. This increase was confirmed to occur in individual STs by analyzing samples obtained from stylet bundles exuding for many hours. Finally, an apparent relationship between the exudation rate of ST sap and its total amino acid concentration was observed: samples containing higher total amino acid concentrations were observed to exude from the severed stylet bundles more slowly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.