An anterior transarticular atlantoaxial screw 15-25 mm long can be inserted with a lateral angulation of 5-25 degrees relative to the sagittal plane and a posterior angulation of 10-25 degrees relative to the coronal plane. Additionally, in C1-C2 anterior plate fixation screws 15 mm long could be anchored in the inferior facet of the C1, and screws 9-15 mm long could be anchored in the C2 vertebral body.
BackgroundBone is a common target of metastasis in kidney cancer, and accurately predicting the risk of bone metastases (BMs) facilitates risk stratification and precision medicine in kidney cancer.MethodsPatients diagnosed with kidney cancer were extracted from the Surveillance, Epidemiology, and End Results (SEER) database to comprise the training group from 2010 to 2017, and the validation group was drawn from our academic medical center. Univariate and multivariate logistic regression analyses explored the statistical relationships between the included variables and BM. Statistically significant risk factors were applied to develop a nomogram. Calibration plots, receiver operating characteristic (ROC) curves, probability density functions (PDF), and clinical utility curves (CUC) were used to verify the predictive performance. Kaplan-Meier (KM) curves demonstrated survival differences between two subgroups of kidney cancer with and without BMs. A convenient web calculator was provided for users via “shiny” package.ResultsA total of 43,503 patients were recruited in this study, of which 42,650 were training group cases and 853 validation group cases. The variables included in the nomogram were sex, pathological grade, T-stage, N-stage, sequence number, brain metastases, liver metastasis, pulmonary metastasis, histological type, primary site, and laterality. The calibration plots confirmed good agreement between the prediction model and the actual results. The area under the curve (AUC) values in the training and validation groups were 0.952 (95% CI, 0.950–0.954) and 0.836 (95% CI, 0.809–0.860), respectively. Based on CUC, we recommend a threshold probability of 5% to guide the diagnosis of BMs.ConclusionsThe comprehensive predictive tool consisting of nomogram and web calculator contributes to risk stratification which helped clinicians identify high-risk cases and provide personalized treatment options.
BackgroundThe published literatures indicate that patients with osteoporotic vertebral compression fractures (OVCFs) benefit significantly from percutaneous kyphoplasty (PKP), but this surgical technique is associated with frequent postoperative recollapse, a complication that severely limits long-term postoperative functional recovery.MethodsThis study retrospectively analyzed single-segment OVCF patients who underwent bilateral PKP at our academic center from January 1, 2017 to September 30, 2019. Comparing the plain films of patients within 3 days after surgery and at the final follow-up, we classified patients with more than 10% loss of sagittal anterior height as the recollapse group. Univariate and multivariate logistic regression analyses were performed to determine the risk factors affecting recollapse after PKP. Based on the logistic regression results, we constructed one support vector machine (SVM) classifier to predict recollapse using machine learning (ML) algorithm. The predictive performance of this prediction model was validated by the receiver operating characteristic (ROC) curve, 10-fold cross validation, and confusion matrix.ResultsAmong the 346 consecutive patients (346 vertebral bodies in total), postoperative recollapse was observed in 40 patients (11.56%). The results of the multivariate logistical regression analysis showed that high body mass index (BMI) (Odds ratio [OR]: 2.08, 95% confidence interval [CI]: 1.58–2.72, p < 0.001), low bone mineral density (BMD) T-scores (OR: 4.27, 95% CI: 1.55–11.75, p = 0.005), presence of intravertebral vacuum cleft (IVC) (OR: 3.10, 95% CI: 1.21–7.99, p = 0.019), separated cement masses (OR: 3.10, 95% CI: 1.21–7.99, p = 0.019), cranial endplate or anterior cortical wall violation (OR: 0.17, 95% CI: 0.04–0.79, p = 0.024), cement-contacted upper endplate alone (OR: 4.39, 95% CI: 1.20–16.08, p = 0.025), and thoracolumbar fracture (OR: 6.17, 95% CI: 1.04–36.71, p = 0.045) were identified as independent risk factors for recollapse after a kyphoplasty surgery. Furthermore, the evaluation indices demonstrated a superior predictive performance of the constructed SVM model, including mean area under receiver operating characteristic curve (AUC) of 0.81, maximum AUC of 0.85, accuracy of 0.81, precision of 0.89, and sensitivity of 0.98.ConclusionsFor patients with OVCFs, the risk factors leading to postoperative recollapse were multidimensional. The predictive model we constructed provided insights into treatment strategies targeting secondary recollapse prevention.
Background. Symptomatic rotator cuff calcific tendinitis (RCCT) is a common shoulder disorder, and approaches combined with artificial intelligence greatly facilitate the development of clinical practice. Current scarce knowledge of the onset suggests that clinicians may need to explore this disease thoroughly. Methods. Clinical data were retrospectively collected from subjects diagnosed with RCCT at our institution within the period 2008 to 2020. A standardized questionnaire related to shoulder symptoms was completed in all cases, and standardized radiographs of both shoulders were extracted using a human-computer interactive electronic medical system (EMS) to clarify the clinical diagnosis of symptomatic RCCT. Based on the exclusion of asymptomatic subjects, risk factors in the baseline characteristics significantly associated with the onset of symptomatic RCCT were assessed via stepwise logistic regression analysis. Results. Of the 1,967 consecutive subjects referred to our academic institution for shoulder discomfort, 237 were diagnosed with symptomatic RCCT (12.05%). The proportion of women and the prevalence of clinical comorbidities were significantly higher in the RCCT cohort than those in the non-RCCT cohort. Stepwise logistic regression analysis confirmed that female gender, hyperlipidemia, diabetes mellitus, and hypothyroidism were independent risk factors for the entire cohort. Stratified by gender, the study found a partial overlap of risk factors contributing to morbidity in men and women. Diagnosis of hyperlipidemia, diabetes mellitus, and hypothyroidism in male cases and diabetes mellitus in female cases were significantly associated with symptomatic RCCT. Conclusion. Independent predictors of symptomatic RCCT are female, hyperlipidemia, diabetes mellitus, and hypothyroidism. Men diagnosed with hyperlipidemia, diabetes mellitus, and hypothyroidism are at high risk for symptomatic RCCT, while more medical attention is required for women with diabetes mellitus. Artificial intelligence offers pioneering innovations in the diagnosis and treatment of musculoskeletal disorders, and careful assessment through individualized risk stratification can help predict onset and targeted early stage treatment.
Background Percutaneous pedicle screw fixation (PPSF) is the primary approach for single-segment thoracolumbar burst fractures (TLBF). The healing angle at the thoracolumbar junction is one of the most significant criteria for evaluating the efficacy of PPSF. Therefore, the purpose of this study was to analyze the predictors associated with the poor postoperative alignment of the thoracolumbar region from routine variables using a support vector machine (SVM) model. Methods We retrospectively analyzed patients with TLBF operated at our academic institute between March 1, 2014 and December 31, 2019. Stepwise logistic regression analysis was performed to assess potential statistical differences between all clinical and radiological variables and the adverse events. Based on multivariate logistic results, a series of independent risk factors were fed into the SVM model. Meanwhile, the feature importance of radiologic outcome for each parameter was explored. The predictive performance of the SVM classifier was evaluated using the area under the receiver operating characteristic curve (AUC), accuracy (ACC) and confusion matrices with 10-fold cross-validation, respectively. Results In the recruited 150 TLBFs, unfavorable radiological outcomes were observed in 53 patients (35.33%). The relationship between osteoporosis (p = 0.036), preoperative Cobb angle (p = 0.001), immediate postoperative Cobb angle (p = 0.029), surgically corrected Cobb angle (p = 0.001), intervertebral disc injury (Score 2 p = 0.001, Score 3 p = 0.001), interpedicular distance (IPD) (p = 0.001), vertebral body compression rate (VBCR) (p = 0.010) and adverse events was confirmed by univariate regression. Thereafter, independent risk factors including preoperative Cobb angle, the disc status and IPD and independent protective factors surgical correction angle were identified by multivariable logistic regression. The established SVM classifier demonstrated favorable predictive performance with the best AUC = 0.93, average AUC = 0.88, and average ACC = 0.87. The variables associated with radiological outcomes, in order of correlation strength, were intervertebral disc injury (42%), surgically corrected Cobb angle (25%), preoperative Cobb angle (18%), and IPD (15%). The confusion matrix reveals the classification results of the discriminant analysis. Conclusions Critical radiographic indicators and surgical purposes were confirmed to be associated with an unfavorable radiographic outcome of TLBF. This SVM model demonstrated good predictive ability for endpoints in terms of adverse events in patients after PPSF surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.