In an electroencephalogram- (EEG-) based brain–computer interface (BCI), a subject can directly communicate with an electronic device using his EEG signals in a safe and convenient way. However, the sensitivity to noise/artifact and the non-stationarity of EEG signals result in high inter-subject/session variability. Therefore, each subject usually spends long and tedious calibration time in building a subject-specific classifier. To solve this problem, we review existing signal processing approaches, including transfer learning (TL), semi-supervised learning (SSL), and a combination of TL and SSL. Cross-subject TL can transfer amounts of labeled samples from different source subjects for the target subject. Moreover, Cross-session/task/device TL can reduce the calibration time of the subject for the target session, task, or device by importing the labeled samples from the source sessions, tasks, or devices. SSL simultaneously utilizes the labeled and unlabeled samples from the target subject. The combination of TL and SSL can take advantage of each other. For each kind of signal processing approaches, we introduce their concepts and representative methods. The experimental results show that TL, SSL, and their combination can obtain good classification performance by effectively utilizing the samples available. In the end, we draw a conclusion and point to research directions in the future.
Using object detection techniques on immature fruits to find out their quantity and position is a crucial step for intelligent orchard management. A yellow peach target detection model (YOLOv7-Peach) based on the improved YOLOv7 was proposed to address the problem of immature yellow peach fruits in natural scenes that are similar in color to the leaves but have small sizes and are easily obscured, leading to low detection accuracy. First, the anchor frame information from the original YOLOv7 model was updated by the K-means clustering algorithm in order to generate anchor frame sizes and proportions suitable for the yellow peach dataset; second, the CA (coordinate attention) module was embedded into the backbone network of YOLOv7 so as to enhance the network’s feature extraction for yellow peaches and to improve the detection accuracy; then, we accelerated the regression convergence process of the prediction box by replacing the object detection regression loss function with EIoU. Finally, the head structure of YOLOv7 added the P2 module for shallow downsampling, and the P5 module for deep downsampling was removed, effectively improving the detection of small targets. Experiments showed that the YOLOv7-Peach model had a 3.5% improvement in mAp (mean average precision) over the original one, much higher than that of SSD, Objectbox, and other target detection models in the YOLO series, and achieved better results under different weather conditions and a detection speed of up to 21 fps, suitable for real-time detection of yellow peaches. This method could provide technical support for yield estimation in the intelligent management of yellow peach orchards and also provide ideas for the real-time and accurate detection of small fruits with near background colors.
The traditional traceability system for agricultural product transactions is susceptible to information alteration and damage, which may lead to issues regarding product quality and food safety. And blockchain is a technology that boasts tamper-proofing, complete traceability and time-stamped storage. Considering the above, this study proposes a new blockchain-based approach to the quality management of agricultural products and introduces Solidity-based prototype smart contracts for agricultural product transactions. Test results show that the new traceability system can offer good performance in terms of data upload and block response time. The method proposed in this paper can be used as a solution for quality management of agricultural product that boasts whole process transparency, full-link reliability and joint supervision by all nodes in the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.