A motor imagery (MI) brain-computer interface (BCI) plays an important role in the neurological rehabilitation training for stroke patients. Electroencephalogram (EEG)-based MI BCI has high temporal resolution, which is convenient for real-time BCI control. Therefore, we focus on EEG-based MI BCI in this paper. The identification of MI EEG signals is always quite challenging. Due to high inter-session/subject variability, each subject should spend long and tedious calibration time in collecting amounts of labeled samples for a subject-specific model. To cope with this problem, we present a supervised selective cross-subject transfer learning (sSCSTL) approach which simultaneously makes use of the labeled samples from target and source subjects based on Riemannian tangent space. Since the covariance matrices representing the multi-channel EEG signals belong to the smooth Riemannian manifold, we perform the Riemannian alignment to make the covariance matrices from different subjects close to each other. Then, all aligned covariance matrices are converted into the Riemannian tangent space features to train a classifier in the Euclidean space. To investigate the role of unlabeled samples, we further propose semi-supervised and unsupervised versions which utilize the total samples and unlabeled samples from target subject, respectively. Sequential forward floating search (SFFS) method is executed for source selection. All our proposed algorithms transfer the labeled samples from most suitable source subjects into the feature space of target subject. Experimental results on two publicly available MI datasets demonstrated that our algorithms outperformed several state-of-the-art algorithms using small number of the labeled samples from target subject, especially for good target subjects.
In motor-imagery brain–computer interface (BCI), transfer learning based on the framework of regularized common spatial patterns (RCSP) can make full use of the training data derived from other subjects to reduce calibration time for a new subject. Covariance matrices are commonly used to estimate the difference between subjects. However, the classification performances vary greatly depending on different assumptions of the distribution of covariance matrices. Therefore, to directly observe the variations of the target subject’s features after transferring, we neglect the distribution of covariance matrices and instead compare cosine similarities of spatial filters between the target subject and the composite subject whose data comes from the target subject and a source subject. Two RCSP algorithms based on cosine measure are proposed to use the samples of all source subjects and most useful source subjects, respectively. Experiments on one public data set from BCI competition show that our proposed approaches significantly improve the classification performances compared to the conventional CSP algorithm in almost every case, based on a small training set.
Long and tedious calibration time hinders the development of motor imagery- (MI-) based brain-computer interface (BCI). To tackle this problem, we use a limited labelled set and a relatively large unlabelled set from the same subject for training based on the transductive support vector machine (TSVM) framework. We first introduce an improved TSVM (ITSVM) method, in which a comprehensive feature of each sample consists of its common spatial patterns (CSP) feature and its geometric feature. Moreover, we use the concave-convex procedure (CCCP) to solve the optimization problem of TSVM under a new balancing constraint that can address the unknown distribution of the unlabelled set by considering various possible distributions. In addition, we propose an improved self-training TSVM (IST-TSVM) method that can iteratively perform CSP feature extraction and ITSVM classification using an expanded labelled set. Extensive experimental results on dataset IV-a from BCI competition III and dataset II-a from BCI competition IV show that our algorithms outperform the other competing algorithms, where the sizes and distributions of the labelled sets are variable. In particular, IST-TSVM provides average accuracies of 63.25% and 69.43% with the abovementioned two datasets, respectively, where only four positive labelled samples and sixteen negative labelled samples are used. Therefore, our algorithms can provide an alternative way to reduce the calibration time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.