Self-powered wearable electronics to convert mechanical and thermal energy into electrical energy are important for biomedical monitoring, which highly require good flexibility, comfortability, signal sensitivity, and accuracy. In this work, composite nanofiber mats of polyacrylonitrile (PAN) and trimethylamine borane (TMAB) were prepared by electrospinning, which exhibited excellent piezoelectric and pyroelectric abilities in harvesting mechanical and thermal energy. The PAN/TMAB-4 nanofiber mats not only generated a high voltage of up to 2.56 V and a high power of 0.19 μW upon shape deformation but also exhibited linear voltage response to thermal gradient. The hybrid piezoelectric and pyroelectric output signals were successfully integrated together and have been applied to precisely monitor human vital signs, including elbow bending angles, foot posture, and breathing status, in real time by attaching the flexible sensors to proper human body parts. Overall, good flexibility, bifunctional sensing ability, and self-power make PAN-/TMAB-type sensors very attractive in fabricating high-performance electronics for detecting motion, monitoring health, and making portable microelectronics.
Repetitive transcranial magnetic stimulation (rTMS) is an effective and safe treatment for depression; however, its potential has likely been hindered due to non-optimized targeting, unclear ideal stimulation parameters, and lack of information regarding how the brain is physiologically responding during and after stimulation. While neuroimaging is ideal for obtaining such critical information, existing modalities have been limited due to poor resolutions, along with significant noise interference from the electromagnetic spectrum. In this study, we used a novel diffuse optical tomography (DOT) device in order to advance our understanding of the neurophysiological effects of rTMS in depression. Healthy and depressed subjects aged 18–70 were recruited. Treatment parameters were standardized with targeting of the left dorsolateral prefrontal cortex with a magnetic field intensity of 100% of motor threshold, pulse frequency of 10 per second, a 4 s stimulation time and a 26 s rest time. DOT imaging was simultaneously acquired from the contralateral dorsolateral prefrontal cortex. Six healthy and seven depressed subjects were included for final analysis. Hemoglobin changes and volumetric three-dimensional activation patterns were successfully captured. Depressed subjects were observed to have a delayed and less robust response to rTMS with a decreased volume of activation compared to healthy subjects. In this first-in-human study, we demonstrated the ability of DOT to safely and reliably capture and compare cortical response patterns to rTMS in depressed and healthy subjects. We introduced this emerging optical functional imaging modality as a novel approach to investigating targeting, new treatment parameters, and physiological effects of rTMS in depression.
Transcranial magnetic stimulation (TMS) has been established as an important and effective treatment for various psychiatric disorders. However, its effectiveness has likely been limited due to the dearth of neuronavigational tools for targeting purposes, unclear ideal stimulation parameters, and a lack of knowledge regarding the physiological response of the brain to TMS in each psychiatric condition. Modern optical imaging modalities, such as functional near-infrared spectroscopy and diffuse optical tomography, are promising tools for the study of TMS optimization and functional targeting in psychiatric disorders. They possess a unique combination of high spatial and temporal resolutions, portability, real-time capability, and relatively low costs. In this mini-review, we discuss the advent of optical imaging techniques and their innovative use in several psychiatric conditions including depression, panic disorder, phobias, and eating disorders. With further investment and research in the development of these optical imaging approaches, their potential will be paramount for the advancement of TMS treatment protocols in psychiatry.
A new design of a fibre-optic probe system is presented which can be used to simultaneously detect scattering signals from multiple channels for spatially offset Raman spectroscopy and Raman tomography in reflection mode. The fibre setup contained 32 source fibres with an auto-controlled optical switch and 40 detector fibres, which were deployed in a large-area planar interface. Phantom experiments were conducted using a prototype of the Raman instrument, and have demonstrated the practical applicability of the system design. The presented area-detection instrument provides an efficient platform for various reflectance applications of Raman modalities over a large area. It could also be potentially adopted for other diffuse opticalbased spectroscopic and tomographic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.