Summary
In this study, potato starch (PS) was complexed with soybean peptides (SPTs) with different molecular weights under heat moisture treatment (HMT) at different moisture contents. The results showed that PSSPT complexes formed under HMT were characterised by weaker and fuzzier polarised cross patterns, and more agglomerates. After HMT, higher gelatinisation temperatures and lower enthalpies were observed for PSSPT complexes. In particular, higher gelatinisation temperatures were observed when moisture levels were higher during HMT. Compared with physically mixed counterparts, the PSSPT complexes under HMT displayed higher pasting temperatures and lower swelling power, and peak viscosity. Higher moisture content during HMT led to a less thermodynamically stable B‐polymorphic structure converting to a more stable A‐type polymorph. Higher SDS content was found in the PSSPT complexes subjected to HMT with lower moisture content, while relatively higher RS content was associated with higher moisture content of HMT. These results could be attributed to restructuring of the amylose/amylopectin chains, the physical barrier of SPT and interactions between the negatively charged groups in PS and the side chains in SPT. This study will advance our understanding of food multicomponent interactions, as well as guidance for the application development of low‐glycaemic index foods containing SDS and RS in the field of fine food processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.