This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
IFI44 is an interferon-alfa inducible protein, and is associated with infection of several viruses. However, IFI44 elicits minimal antiviral effects on these viruses, and its exact role is still unknown. Here we show that IFI44 inhibits HIV-1 replication in vitro. Through depletion of endogenous IFI44 or overexpression of IFI44 we confirm that IFI44 suppresses HIV-1 LTR promoter activity and affects viral transcription. Furthermore, we find that IFI44 localizes to nuclei and binds to the HIV-1 LTR promoter in HIV-1 infected cells. Removing suppression of HIV-1 transcription benefits reactivation of HIV-1 proviruses for purging latent reservoirs. We demonstrate that depletion of endogenous IFI44 in J-LAT cells induces reactivation of latent HIV-1. Based on these results, we propose a model in which IFI44 is recruited to the HIV-1 LTR, which may suppress viral transcription and prevent reactivation of latent HIV-1. Our study suggests a previously unrecognized anti-HIV phenomenon for interferon-stimulated proteins.
Background: FACT proteins SUPT16H and SSRP1 are identified as host factors that restrict HIV-1 replication. Results: Biochemical and genetic evidences that SUPT16H and SSRP1 affect HIV-1/HTLV-1 transcription and latency are provided. Conclusion: SUPT16H and SSRP1 suppress transcription of HIV-1/HTLV-1, and their presence may promote HIV-1 latency. Significance: Identification of host factors necessary for HIV-1 latency is critical, which may benefit the development of novel HIV-1 latency-reversing agents.
Although combination antiretroviral therapy is potent to block active replication of HIV-1 in AIDS patients, HIV-1 persists as transcriptionally inactive proviruses in infected cells. These HIV-1 latent reservoirs remain a major obstacle for clearance of HIV-1. Investigation of host factors regulating HIV-1 latency is critical for developing novel antiretroviral reagents to eliminate HIV-1 latent reservoirs. From our recently accomplished CRISPR/Cas9 sgRNA screens, we identified that the histone demethylase, MINA53, is potentially a novel HIV-1 latency-promoting gene (LPG). We next validated MINA53’s function in maintenance of HIV-1 latency by depleting MINA53 using the alternative RNAi approach. We further identified that in vitro MINA53 preferentially demethylates the histone substrate, H3K36me3 and that in cells MINA53 depletion by RNAi also increases the local level of H3K36me3 at LTR. The effort to map the downstream effectors unraveled that H3K36me3 has the cross-talk with another epigenetic mark H4K16ac, mediated by KAT8 that recognizes the methylated H3K36 and acetylated H4K16. Removing the MINA53-mediated latency mechanisms could benefit the reversal of post-integrated latent HIV-1 proviruses for purging of reservoir cells. We further demonstrated that a pan jumonji histone demethylase inhibitor, JIB-04, inhibits MINA53-mediated demethylation of H3K36me3, and JIB-04 synergizes with other latency-reversing agents (LRAs) to reactivate latent HIV-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.