This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
Follistatin-like 1 (Fstl1) is induced in response to lung injury and promotes the accumulation of myofibroblasts and subsequent fibrosis via regulation of TGF-β and BMP. Reducing Fstl1 in mice reduces bleomycin-induced fibrosis in vivo, offering a potential therapeutic target for progressive lung fibrosis.
Carbon quantum dots (C-QDs) are becoming a desirable alternative to metal-based QDs and dye probes owing to their high biocompatibility, low toxicity, ease of preparation, and unique photophysical properties. Herein, we describe fluorescence bioimaging of zebrafish using C-QDs as probe in terms of the preparation of C-QDs, zebrafish husbandry, embryo harvesting, and introduction of C-QDs into embryos and larvae by soaking and microinjection. The multicolor of C-QDs was validated with their imaging for zebrafish embryo. The distribution of C-QDs in zebrafish embryos and larvae were successfully observed from their fluorescence emission. the bio-toxicity of C-QDs was tested with zebrafish as model and C-QDs do not interfere to the development of zebrafish embryo. All of the results confirmed the high biocompatibility and low toxicity of C-QDs as imaging probe. The absorption, distribution, metabolism and excretion route (ADME) of C-QDs in zebrafish was revealed by their distribution. Our work provides the useful information for the researchers interested in studying with zebrafish as a model and the applications of C-QDs. The operations related zebrafish are suitable for the study of the toxicity, adverse effects, transport, and biocompatibility of nanomaterials as well as for drug screening with zebrafish as model.
BackgroundRecently, increased tumor incidence and cancer-related mortality have been reported among patients with obstructive sleep apnea (OSA). Intermittent hypoxia (IH), the hallmark feature of OSA, contributes to the metastasis of tumors. However, the molecular mechanisms by which tumor metastasis is accelerated by OSA-like IH remain to be elucidated.MethodsC57BL/6 J male mice were subjected to intravenous injection of B16F10 melanoma cells before receiving IH treatment. Then, the animals were randomly distributed into three groups (n = 8 each): normoxia (N) group, IH group, and antioxidant tempol group (IHT, exposed to IH after treatment with tempol). After the mice were sacrificed, the number and weight of lung metastatic colonies were assessed. The lung tissues with tumor metastasis were analyzed for markers of oxidative stress and inflammation and for HIF-1α using western blotting and real-time PCR (qRT-PCR). The level of reactive oxygen species (ROS) in B16F10 cell was also assessed after N, IH and IH with tempol treatments.ResultsCompared with normoxia, IH significantly increased the number and weight of mouse lung metastatic colonies. Treatment of B16F10 cells with IH significantly enhanced ROS generation. Lung tissues with tumor metastasis provided evidence of increased oxidative stress, as assessed by p22phox and SOD mRNA levels and the NRF2 protein level, as well as increased inflammation, as assessed by TNF-α and IL-6 mRNA levels and the NF-κB P65 protein level. HIF-1α protein levels were increased in response to IH treatment. Tempol, an important antioxidant, ameliorated IH-induced melanoma lung metastasis in mice and reduced oxidative stress and inflammation responses.ConclusionsThese results support the hypothesis that oxidative stress and inflammation responses play an important role in the pathogenesis of OSA-like IH-induced melanoma lung metastasis in mice. Antioxidant intervention provides a novel strategy for the prevention and treatment of cancer in OSA populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.