Using an ultrasound-assisted chemical technique, ZnO quantum dot and ZnO composites were created. The optical characteristics and structural details of these composites were examined using TEM, XRD, XPS, FT-IR, UV-vis, and BET. The results revealed that both the ZnO quantum dot composite and ZnO composite exhibited outstanding optical properties, making them suitable for photocatalytic reactions. In order to analyze the photocatalytic performance, a degradation experiment was conducted using Rhodamine B solution as the simulation dye wastewater. The experiment demonstrated that the degradation of Rhodamine B followed the first-order reaction kinetics equation when combined with the photocatalytic reaction kinetics. Moreover, through cyclic stability testing, it was determined that the ZnO QDs-GO-g-C3N4 composite sample showed good stability and could be reused. The degradation rates of Rhodamine B solution using ZnO-GO-g-C3N4 and ZnO QDs-GO-g-C3N4 reached 95.25% and 97.16%, respectively. Furthermore, free-radical-trapping experiments confirmed that ·O2− was the main active species in the catalytic system and its photocatalytic mechanism was elucidated. The photocatalytic oxidation of ZnO quantum dots in this study has important reference value and provides a new idea for the subsequent research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.