Metal halide perovskite solar cells (PSCs) have raised considerable scientific interest due to their high cost‐efficiency potential for photovoltaic solar energy conversion. As PSCs already are meeting the efficiency requirements for renewable power generation, more attention is given to further technological barriers as environmental stability and reliability. However, the most major obstacle limiting commercialization of PSCs is the lack of a reliable and scalable process for thin film production. Here, a generic crystallization strategy that allows the controlled growth of highly qualitative perovskite films via a one‐step blade coating is reported. Through rational ink formulation in combination with a facile vacuum‐assisted precrystallization strategy, it is possible to produce dense and uniform perovskite films with high crystallinity on large areas. The universal application of the method is demonstrated at the hand of three typical perovskite compositions with different band gaps. P‐i‐n perovskite solar cells show fill factors up to 80%, underpinning the statement of the importance of controlling crystallization dynamics. The methodology provides important progress toward the realization of cost‐effective large‐area perovskite solar cells for practical applications.
In the present study, the role of ethylene in nitric oxide (NO)-mediated protection by modulating ion homeostasis in Arabidopsis callus under salt stress was investigated. Results showed that the ethylene-insensitive mutant etr1-3 was more sensitive to salt stress than the wild type (WT). Under 100 mM NaCl, etr1-3 callus displayed a greater electrolyte leakage and Na(+)/K(+) ratio but a lower plasma membrane (PM) H(+)-ATPase activity compared to WT callus. Application of exogenous 1-aminocyclopropane-1-carboxylic acid (ACC, an ethylene precursor) or sodium nitroprusside (SNP, a NO donor) alleviated NaCl-induced injury by maintaining a lower Na(+)/K(+) ratio and an increased PM H(+)-ATPase activity in WT callus but not in etr1-3 callus. The SNP actions in NaCl stress were attenuated by a specific NO scavenger or an ethylene biosynthesis inhibitor in WT callus. Under 100 mM NaCl, the NO accumulation and ethylene emission appeared at early time, and NO production greatly stimulated ethylene emission in WT callus. In addition, ethylene induced the expression of PM H(+)-ATPase genes under salt stress. The recovery experiment showed that NaCl-induced injury was reversible, as signaled by the similar recovery of Na(+)/K(+) ratio and PM H(+)-ATPase activity in WT callus. Taken together, the results indicate that ethylene and NO cooperate in stimulating PM H(+)-ATPase activity to modulate ion homeostasis for salt tolerance, and ethylene may be a part of the downstream signal molecular in NO action.
The roles of ethylene, hydrogen peroxide (H(2)O(2)), and calcium in inducing the capacity of the alternative respiratory pathway (AP) under chilling temperature in Arabidopsis thaliana calli were investigated. Exposure of wild-type (WT) calli, but not the calli of ethylene-insensitive mutants, etr1-3 and ein2-1, to chilling led to a marked increase of the AP capacity and triggered a rapid ethylene emission and H(2)O(2) generation. Increasing ethylene emission by applying 1-aminocyclopropane-1-carboxylic (an ethylene precursor) markedly enhanced the AP capacity in WT calli, but not in etr1-3 and ein2-1 calli, whereas suppressing ethylene emission by applying aminooxyacetic acid (an ethylene biosynthesis inhibitor) abolished the chilling-induced AP capacity in WT calli. Furthermore, exogenous H(2)O(2) treatment increased the AP capacity in WT calli, but not in etr1-3 and ein2-1 calli, while both catalase (H(2)O(2) scavenger) and diphenylene iodonium (DPI, an inhibitor of NADPH oxidase) completely inhibited the chilling-induced H(2)O(2) generation and largely inhibited the chilling-induced AP capacity. Interestingly, the chilling-induced AP capacity was completely inhibited by DPI and EGTA (calcium chelator). Further investigation demonstrated that H(2)O(2) and calcium induced ethylene emission under chilling stress. Ethylene modulated the chilling-induced increase of pyruvate content and the expression of alternative oxidase genes (AOX1a and AOX1c). Taken together, these results indicate that H(2)O(2)-, calcium- and ethylene-dependent pathways are required for chilling-induced increase in AP capacity. However, only ethylene is indispensable for the activation of the AP capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.