This study aims to identify prognostic microRNAs (miRNAs) biomarkers for diagnosis and survival of hepatocellular carcinoma (HCC) based on large patients cohort analysis. HCC patient cohort data were downloaded from The Cancer Genome Atlas, including paired HCC and adjacent non-cancer tissues. Receiver operating characteristic curve method was used to classify cancer and non-cancer tissues according to microRNAs expression levels. The aberrant microRNAs expression level were ranked and risked for building a prognostic miRNAs signature model. Kaplan–Meier survival was used to analyze the differences among various risk factors in accordance with miRNAs ranking scores. The study showed 33-miRNA signature, 11 were down-regulated and 22 were up-regulated through comparison between cancer samples and non-cancer samples. The maximum correct classification rate is up to 98.7%. Five microRNAs, hsa-mir-3677, hsa-mir-421, hsa-mir-326, hsa-mir-424 and hsa-mir-511-2, significantly correlated with patient survival. The survival rate and time negatively associated with lowering miRNAs index. In the low risk group, over 70% patients showed 5 years survival, while none patients survived longer than 5 years in the high risk group. MiR-424, miR-326 and miR-511 could be applied for HCC diagnostic biomarkers. These five miRNAs were significantly associated with lysosome pathway and D-Glutamine and D-glutamate metabolism pathway via Kyoto Encyclopedia of Genes and Genomes pathway analysis and Gene Ontology annotation. Conclusively, the five miRNAs expression signature could be used as HCC prognostic and diagnostic biomarkers.
BackgroundKruppel family member zinc binding protein 89 (ZBP-89), also known as ZNF148, regulates Bak expression via binding to GC-rich promoter domain. It is not clear if other GC-rich binding factors, such as Sp family members, can interact with ZBPp-89 on Bak expression. This study aims to elucidate the mechanism of Bak expression regulation by ZBP-89 and Sp proteins, based on in vitro experiment and The Cancer Genome Atlas (TCGA) hepatocellular carcinoma (HCC) data cohort.MethodsWe downloaded TCGA hepatocellular carcinoma (HCC) cohort data to analysis the association of Bak transcription level with ZBP-89 and Sp proteins transcription level. HCC cell lines and liver immortal non-tumour cell lines were used for mechanism study, including western blotting analysis, expression vector mediated gene expression and siRNA interference.ResultsResults showed that cancer tissues have higher Bak transcription level compared with adjacent non-cancer tissues. Bak transcription level was correlated with Sp1 and Sp3 expression level, while no correlation was found in ZBP-89 and Bak, neither Sp2 nor Sp4. Mithramycin A (MMA) induced Bak expression in a dose-dependent manner. Western blotting results showed Sp1 overexpression increased Bak expression both in liver immortal non-tumour cells and HCC cells. Interference Sp1 expression could inhibit Bak expression alone. ZBP-89 siRNA suppressed Bak expression even in the presence of MMA treatment and S1 overexpression. Additionally, Bak and Sp1 level were associated with HCC patient survival.ConclusionsBak expression required ZBP-89 and Sp1 cooperative regulation simultaneously.Electronic supplementary materialThe online version of this article (10.1186/s12885-018-4349-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.