Residual feed intake (RFI) is a measure of feed efficiency defined as the difference between the observed feed intake and that predicted from the average requirements for growth and maintenance. The objective of this study was to evaluate the response in a selection experiment consisting of a line selected for low RFI and a random control line and to estimate the genetic parameters for RFI and related production and carcass traits. Beginning with random allocation of purebred Yorkshire littermates, in each generation, electronically measured ADFI, ADG, and ultrasound backfat (BF) were evaluated during a approximately 40- to approximately 115-kg of BW test period on approximately 90 boars from first parity and approximately 90 gilts from second parity sows of the low RFI line. After evaluation of first parity boars, approximately 12 boars and approximately 70 gilts from the low RFI line were selected to produce approximately 50 litters for the next generation. Approximately 30 control line litters were produced by random selection and mating. Selection was on EBV for RFI from an animal model analysis of ADFI, with on-test group and sex (fixed), pen within group and litter (random), and covariates for interactions of on- and off-test BW, on-test age, ADG, and BF with generations. The RFI explained 34% of phenotypic variation in ADFI. After 4 generations of selection, estimates of heritability for RFI, ADFI, ADG, feed efficiency (FE, which is the reciprocal of the feed conversion ratio and equals ADG/ ADFI), and ultrasound-predicted BF, LM area (LMA), and intramuscular fat (IMF) were 0.29, 0.51, 0.42, 0.17, 0.68, 0.57, and 0.28, respectively; predicted responses based on average EBV in the low RFI line were -114, -202, and -39 g/d for RFI (= 0.9 phenotypic SD), ADFI (0.9 SD), and ADG (0.4 SD), respectively, and 1.56% for FE (0.5 SD), -0.37 mm for BF (0.1 SD), 0.35 cm(2) for LMA (0.1 SD), and -0.10% for IMF (0.3 SD). Direct phenotypic comparison of the low RFI and control lines based on 92 low RFI and 76 control gilts from the second parity of generation 4 showed that selection had significantly decreased RFI by 96 g/d (P = 0.002) and ADFI by 165 g/d (P < 0.0001). The low RFI line also had 33 g/d lower ADG (P = 0.022), 1.36% greater FE (P = 0.09), and 1.99 mm less BF (P = 0.013). There was not a significant difference in LMA and other carcass traits, including subjective marbling score, despite a large observed difference in ultrasound-predicted IMF (-1.05% with P < 0.0001). In conclusion, RFI is a heritable trait, and selection for low RFI has significantly decreased the feed required for a given rate of growth and backfat.
Maize (Zea mays L.) is among the most important grains contributing to global food security. Eighty years of genetic gain for yield of maize under both favorable and unfavorable stress‐prone drought conditions have been documented for the US Corn Belt, yet maize remains vulnerable to drought conditions, especially at the critical developmental stage of flowering. Optimum AQUAmax (Dupont Pioneer) maize hybrids were developed for increased grain yield under drought and favorable conditions in the US Corn Belt. Following the initial commercial launch in 2011, a large on‐farm data set has been accumulated (10,731 locations) comparing a large sample of the AQUAmax hybrids (78 hybrids) to a large sample of industry‐leading hybrids (4287 hybrids) used by growers throughout the US Corn Belt. Following 3 yr (2011–2013) of on‐farm industry‐scale testing, the AQUAmax hybrids were on average 6.5% higher yielding under water‐limited conditions (2006 locations) and 1.9% higher yielding under favorable growing conditions (8725 locations). In a complementary study, 3 yr (2010–2012) of hybrid‐by‐management‐by‐environment evaluation under water‐limited conditions (14 locations) indicated that the AQUAmax hybrids had greater yield at higher plant populations when compared to non‐AQUAmax hybrids. The combined results from research (2008–2010) and on‐farm (2011–2013) testing throughout the US Corn Belt over the 6‐yr period from 2008 to 2013 indicate that the AQUAmax hybrids offer farmers greater yield stability under water‐limited conditions with no yield penalty when the water limitations are relieved and growing conditions are favorable.
Residual feed intake (RFI) is a measure of feed efficiency, in which low RFI denotes improved feed efficiency. Caloric restriction (CR) is associated with feed efficiency in livestock species and to human health benefits, such as longevity and cancer prevention. We have developed pig lines that differ in RFI, and we are interested in identifying the genes and pathways that underlie feed efficiency. Prepubertal Yorkshire gilts with low RFI (n ϭ 10) or high RFI (n ϭ 10) were fed ad libitum or fed at restricted intake of 80% of maintenance energy requirements for 8 days. We measured serum metabolites and hormones and generated transcriptional profiles of liver and subcutaneous adipose tissue on these animals. Overall, 6,114 genes in fat and 305 genes in liver were differentially expressed (DE) in response to CR, and 311 genes in fat and 147 genes in liver were DE due to RFI differences. Pathway analyses of CR-induced DE genes indicated a dramatic switch to a conservation mode of energy usage by down-regulating lipogenesis and steroidogenesis in both liver and fat. Interestingly, CR altered expression of genes in immune and cell cycle/apoptotic pathways in fat, which may explain part of the CR-driven lifespan enhancement. In silico analysis of transcription factors revealed ESR1 as a putative regulator of the adaptive response to CR, as several targets of ESR1 in our DE fat genes were annotated as cell cycle/ apoptosis genes. The lipid metabolic pathway was overrepresented by down-regulated genes due to both CR and low RFI. We propose a common energy conservation mechanism, which may be controlled by PPARA, PPARG, and/or CREB in both CR and feed-efficient pigs. microarray; transcriptional profiling; ESR1; residual feed intake; peroxisome proliferator-activated receptor a; peroxisome proliferatoractivated receptor g; cAMP response element binding; protein GENETIC MECHANISMS THAT CONTROL feed intake (FI) and feed efficiency are not well understood. Differences in feed efficiency arise due to factors such as variations in body composition, feeding patterns, digestibility, activity, thermoregulation, and tissue metabolic rates (68). Residual feed intake (RFI) has been broadly accepted as a reliable method of measuring feed efficiency and is defined as the feed consumed above or below what is required for growth and maintenance (47, 54). Pigs with low RFI (LRFI) consume less food than the population average without a significant loss in growth parameters such as body weight and composition, and therefore, they are more feed efficient. Our group has successfully developed pig lines that differ in RFI up to 124 g/day without significant change in the body composition, with an estimated heritability for RFI of 0.33 (12). The physiology underlying RFI differences has been studied mainly in poultry and in beef cattle, in which whole-genome SNP analyses and microarray approaches have been undertaken (6, 9, 74). For example, transcriptomic analysis of liver biopsies from Angus bulls identified 163 differentially expressed genes...
Residual feed intake (RFI) is a measure of feed efficiency defined as the difference between observed and predicted feed intake based on average requirements for growth and maintenance. The objective of this study was to evaluate the effect of selection for decreased RFI on feeding behavior traits and to estimate their relationships with RFI. Three data sets from the 4th and 5th generations of a selection experiment with a line selected for reduced RFI (LRFI) and a randomly selected control line (CTRL) were analyzed. Lines were mixed in pens of 16 and evaluated for feeding behavior traits obtained from a single-space electronic feeder over a growing period of ~3 mo before ~115 kg. The following traits were evaluated as averages over the entire test period and over the first and second half of the test period: number of visits per day and hour; occupation time per day, visit, and hour; feed intake (FI) per day, visit, and hour; and FI rate per visit. Models used included fixed effects of line and feeder, covariates of on-test age and FI per day, and random effects of pen, on-test group, sire, and litter. Repeated measures models were used to analyze feeding patterns during the day. The LRFI pigs had significantly less FI per day than CTRL pigs for all 3 data sets. With adjustment for FI per day, line differences of all traits were in the same direction for all 3 data sets but differed in significance and size. Feed intake per visit and hour and visits per day and hour did not differ between lines, but the trend was for LRFI pigs to have fewer visits, in particular during peak eating times. The LRFI pigs had a greater feeding rate and less occupation time per day, visit, and hour than CTRL pigs, but this was not significant for all data sets. Correlations of RFI with FI per day and visit and visits per day were positive. Average daily gain was positively correlated with FI per day and visit and occupation time per visit but negatively correlated with visits per day. Feed intake per day was positively correlated with backfat. In conclusion, feed efficiency may be affected by FI behavior because selection for decreased RFI has resulted in pigs that spend less time eating and eat faster.
Identification of a genetic basis for RCCL in Newfoundlands provided evidence that investigators can now focus on developing methods to identify carriers to reduce the prevalence of RCCL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.