PurposeThe construction site operates under a hazardous environment that requires a high level of understanding in building systems to minimise accidents. However, the current building education generally adopts paper-based learning approaches that lack hands-on experiences. Furthermore, to achieve Industrial Revolution 4.0 in line with any unforeseen pandemic, the most optimum solution is to transition from physical to technological-based building education. This paper aims to address the problems by proposing a game-based virtual reality (GBVR) for building utility inspection training.Design/methodology/approachThe feasibility of the GBVR for building the utility inspection training approach is validated on a sample of undergraduate engineering students through user experience (survey) and performance-based comparisons against traditional paper-based training method.FindingsThe results show that the developed GBVR training has higher system usability in terms of visual output and knowledge retention than paper-based training due to visualisation technologies. The GBVR training method has also higher user-friendliness because of the higher motivational and engagement factors through the adoption of virtual reality and game-based learning.Research limitations/implicationsGBVR training required a longer training duration and achieved a lower performance score (effectiveness) but can be improved by transitioning into hands-on tasks. This study has the potentials to be extended to vocational training platforms for competency development in the construction workforce by using cutting-edge extended reality technologies.Originality/valueThis paper portrays the benefits of integrating virtual reality technology in building education to overcome the low practicality and engagement of paper-based training.
While VR-based training has been proven to improve learning effectiveness over conventional methods, there is a lack of study on its learning effectiveness due to the implementation of training modes. This study aims to investigate the learning effectiveness of engineering students under different training modes in VR-based construction design training. Three VR scenarios with varying degrees of immersiveness were developed based on Dale’s cone of learning experience, including (1) Audio-visual based training, (2) Interactive-based training, and (3) Contrived hands-on experience training. Sixteen students with varying backgrounds participated in this study. The results posit a positive correlation between learning effectiveness and the degree of immersiveness, with a mean score of 77.33%, 81.33%, and 82.67% in each training scenario, respectively. Participants with lower academic performance tend to perform significantly better in audio-visual and interactive-based training. Meanwhile, participants with experience in gaming tend to outperform the latter group. Results also showed that participants with less experience in gaming benefited the most from hands-on VR training. The findings suggest that the general audience retained the most information via hands-on VR training; however, training scenarios should be contextualized toward the targeted group to maximize learning effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.