RORγ is a dual-functional drug target, which involves not only induction of inflammation but also promotion of cancer immunity. The development of agonists of RORγ promoting Th17 cell differentiation could provide a novel mechanism of action (MOA) as an immune-activating anticancer agent. Herein, we describe new 2-(ortho-substituted benzyl)-indole derivatives as RORγ agonists by scaffold hopping based on clinical RORγ antagonist VTP-43742. Interestingly, subtle structural differences of the compounds led to the opposite biological MOA. After rational optimization for structure−activity relationship and pharmacokinetic profile, we identified a potent RORγ agonist compound 17 that was able to induce the production of IL-17 and IFNγ in tumor tissues and elicit antitumor efficacy in MC38 syngeneic mouse colorectal tumor model. This is the first comprehensive work to demonstrate the in vivo antitumor efficacy of an RORγ agonist.
ERK1/2 kinase is a key downstream node of the RAS-RAF-MEK-ERK signaling pathway. A highly potent and selective ERK1/2 inhibitor is a promising option for cancer treatment that will provide a potential solution for overcoming drug resistance. Herein we designed and synthesized a novel scaffold featuring a pyrrole-fused urea template. The lead compound, SHR2415, was shown to be a highly potent ERK1/2 inhibitor that exhibited high cell potency based on the Colo205 assay. In addition, SHR2415 displayed favorable PK profiles across species as well as robust in vivo efficacy in a mouse Colo205 xenograft model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.