This paper investigates a continuous-time Markowitz mean-variance asset-liability management (ALM) problem under stochastic interest rates and inflation risks. We assume that the company can invest in n + 1 assets: one risk-free bond and n risky stocks. The risky stock's price is governed by a geometric Brownian motion (GBM), and the uncontrollable liability follows a Brownian motion with drift, respectively. The correlation between the risky assets and the liability is considered. The objective is to minimize the risk (measured by variance) of the terminal wealth subject to a given expected terminal wealth level. By applying the Lagrange multiplier method and stochastic control approach, we derive the associated Hamilton-Jacobi-Bellman (HJB) equation, which can be converted into six partial differential equations (PDEs). The closed-form solutions for these six PDEs are derived by using the homogenization approach and the variable transformation technique. Then the closed-form expressions for the efficient strategy and efficient frontier are obtained. In addition, a numerical example is presented to illustrate the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.