Revealing the exact roles of nitrogen configurations and precise control of the nitrogen configuration in nitrogen-doped graphene (NG) are extremely important for realizing its advanced functions in clean energy technologies. Herein, for the first time, we established that the hydrogen evolution reaction (HER) activities of NG display definite trends due to its nitrogen configurations, which were selectively generated by using layer-structured montmorillonite (MMT) with different layer distances and functions modulated by Co 2+ , Ni 2+ , Na + , and H + ions. We found that among the three types of N, i.e., pyridine, pyrrolic, and quaternary N, quaternary N is the most active one for HER in a metal-free NG catalyst, whereas with an introduction of trace atomic cobalt, the planar (pyridine and pyrrolic) N becomes the better one. In contrast, when trace atomic Ni is involved to replace the Co, the former results in heavily depressed HER activities for the NG catalyst. Density functional theory calculations further revealed that (i) the carbon atoms are highly activated for HER by the nearby quaternary N but not by planar N and (ii) nickel blocks but cobalt promotes the hydrogen adsorption after coordination with planar N, leading to an excellent HER performance.
SUMMARYTheoretical analyses of natural and conventional working fluids-based transcritical Rankine power cycles driven by low-temperature geothermal sources have been carried out with the methodology of pinch point analysis using computer models. The regenerator has been introduced and analyzed with a modified methodology considering the considerable variation of specific heat with temperature near the critical state. The evaluations of transcritical Rankine cycles have been performed based on equal thermodynamic mean heat rejection temperature and optimized gas heater pressures at various geothermal source temperature levels ranging from 80 to 1201C. The performances of CO 2 , a natural working fluid most commonly used in a transcritical power cycle, have been indicated as baselines. The results obtained show: optimum thermodynamic mean heat injection temperatures of transcritical Rankine cycles are distributed in the range of 60 to 70% of given geothermal source temperature level; optimum gas heater pressures of working fluids considered are lower than baselines; thermal efficiencies and expansion ratios (Exp r ) are higher than baselines while net power output, volume flow rate at turbine inlet (V 1 ) and heat transfer capacity curves are distributed at both sides of baselines. From thermodynamic and techno-economic point of view, R125 presents the best performances. It shows 10% higher net power output, 3% lower V 1 , 1.0 time higher Exp r , and 22% reduction of total heat transfer areas compared with baselines given geothermal source temperature of 901C. With the geothermal source temperature above 1001C, R32 and R143a also show better performances. R170 shows nearly the same performances with baselines except for the higher V 1 value. It also shows that better temperature gliding match between fluids in the gas heater can lead to more net power output.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.