Human occupancy detection (HOD) in an enclosed space, such as indoors or inside of a vehicle, via passive cognitive radio (CR) is a new and challenging research area. Part of the difficulty arises from the fact that a human subject cannot easily be detected due to spectrum variation. In this paper, we present an advanced HOD system that dynamically reconfigures a CR to collect passive radio frequency (RF) signals at different places of interest. Principal component analysis (PCA) and recursive feature elimination with logistic regression (RFE-LR) algorithms are applied to find the frequency bands sensitive to human occupancy when the baseline spectrum changes with locations. With the dynamically collected passive RF signals, four machine learning (ML) classifiers are applied to detect human occupancy, including support vector machine (SVM), k-nearest neighbors (KNN), decision tree (DT), and linear SVM with stochastic gradient descent (SGD) training. The experimental results show that the proposed system can accurately detect human subjects—not only in residential rooms—but also in commercial vehicles, demonstrating that passive CR is a viable technique for HOD. More specifically, the RFE-LR with SGD achieves the best results with a limited number of frequency bands. The proposed adaptive spectrum sensing method has not only enabled robust detection performance in various environments, but also improved the efficiency of the CR system in terms of speed and power consumption.
Human monitoring applications in indoor environments depend on accurate human identification and activity recognition (HIAR). Single modality sensor systems have shown to be accurate for HIAR, but there are some shortcomings to these systems, such as privacy, intrusion, and costs. To combat these shortcomings for a long-term monitoring solution, an interpretable, passive, multi-modal, sensor fusion system PRF-PIR is proposed in this work. PRF-PIR is composed of one software-defined radio (SDR) device and one novel passive infrared (PIR) sensor system. A recurrent neural network (RNN) is built as the HIAR model for this proposed solution to handle the temporal dependence of passive information captured by both modalities. We validate our proposed PRF-PIR system for a potential human monitoring system through the data collection of eleven activities from twelve human subjects in an academic office environment. From our data collection, the efficacy of the sensor fusion system is proven via an accuracy of 0.9866 for human identification and an accuracy of 0.9623 for activity recognition. The results of the system are supported with explainable artificial intelligence (XAI) methodologies to serve as a validation for sensor fusion over the deployment of single sensor solutions. PRF-PIR provides a passive, non-intrusive, and highly accurate system that allows for robustness in uncertain, highly similar, and complex at-home activities performed by a variety of human subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.