Abstract-A selective wavelet shrinkage algorithm for digital image denoising is presented. The performance of this method is an improvement upon other methods proposed in the literature and is algorithmically simple for large computational savings. The improved performance and computational speed of the proposed wavelet shrinkage algorithm is presented and experimentally compared with established methods. The denoising method incorporated in the proposed algorithm involves a two-threshold validation process for real-time selection of wavelet coefficients. The two-threshold criteria selects wavelet coefficients based on their absolute value, spatial regularity, and regularity across multiresolution scales. The proposed algorithm takes image features into consideration in the selection process. Statistically, most images have regular features resulting in connected subband coefficients. Therefore, the resulting subbands of wavelet transformed images in large part do not contain isolated coefficients. In the proposed algorithm, coefficients are selected due to their magnitude, and only a subset of those selected coefficients which exhibit a spatially regular behavior remain for image reconstruction. Therefore, two thresholds are used in the coefficient selection process. The first threshold is used to distinguish coefficients of large magnitude and the second is used to distinguish coefficients of spatial regularity. The performance of the proposed wavelet denoising technique is an improvement upon several other established wavelet denoising techniques, as well as being computationally efficient to facilitate real-time image-processing applications.
An outbreak of mumps within a student population in Scotland was investigated to assess the effect of previous vaccination on infection and clinical presentation, and any genotypic variation. Of the 341 cases, 79% were aged 18-24. Vaccination status was available for 278 cases of whom 84% had received at least one dose of mumps containing vaccine and 62% had received two. The complication rate was 5·3% (mainly orchitis), and 1·2% were admitted to hospital. Genetic sequencing of mumps virus isolated from cases across Scotland classified 97% of the samples as genotype G. Two distinct clusters of genotype G were identified, one circulating before the outbreak and the other thereafter, suggesting the virus that caused this outbreak was genetically different from the previously circulating virus. Whilst the poor vaccine effectiveness we found may be due to waning immunity over time, a contributing factor may be that the current mumps vaccine is less effective against some genotypes. Although the general benefits of the measles-mumps-rubella (MMR) vaccine should continue to be promoted, there may be value in reassessing the UK vaccination schedule and the current mumps component of the MMR vaccine.
Abstract-Image registration is an essential step in many image processing applications that need visual information from multiple images for comparison, integration, or analysis. Recently, researchers have introduced image registration techniques using the log-polar transform (LPT) for its rotation and scale invariant properties. However, it suffers from nonuniform sampling which makes it not suitable for applications in which the registered images are altered or occluded. Inspired by LPT, this paper presents a new registration algorithm that addresses the problems of the conventional LPT while maintaining the robustness to scale and rotation. We introduce a novel adaptive polar transform (APT) technique that evenly and effectively samples the image in the Cartesian coordinates. Combining APT with an innovative projection transform along with a matching mechanism, the proposed method yields less computational load and more accurate registration than that of the conventional LPT. Translation between the registered images is recovered with the new search scheme using Gabor feature extraction to accelerate the localization procedure. Moreover an image comparison scheme is proposed for locating the area where the image pairs differ. Experiments on real images demonstrate the effectiveness and robustness of the proposed approach for registering images that are subjected to occlusion and alteration in addition to scale, rotation, and translation.
Scaling function of generic wavelet is proposed to be the radar waveform of a radar signal. Its shows significant advantage on conventional linear frequency modulated (LFM) or chirp radar waveform in side-lobe compression. To increase the bandwidth of the radar waveform, we further propose a new radar waveform named chirp-Z, which is composed of wavelet packets. The generation of the chirp-Z signal is introduced, and the signal is compared with the chirp radar pulse with the same duration and same bandwidth chirp. The result demonstrates that chirp-Z signal has much better sidelobe suppression than the conventional chirp signal. Furthermore, due to the composition of wavelet packets in the chirp-Z signal, subband adaptation in both amplitude and phase adjustment becomes flexible in responding to the variation of environments.The latter enables powerful cognitive radar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.