Homogeneous dispersion of ultrafine Pt nanoparticles on 3D architectures constructed of graphene and exfoliated graphitic carbon nitride results in hybrids with 3D porous structures, large surface area, high nitrogen content, and good electrical conductivity. This leads to excellent electrocatalytic activity, unusually high poison tolerance, and reliable stability for methanol oxidation, making them of interest as catalysts in direct methanol fuel cells.
Under the double pressure of both the energy crisis and environmental pollution, the exploitation and utilization of hydrogen, a clean and renewable power resource, has become an important trend in the development of sustainable energy-production and energy-consumption systems. In this regard, the electrocatalytic hydrogen evolution reaction (HER) provides an efficient and clean pathway for the mass production of hydrogen fuel and has motivated the design and construction of highly active HER electrocatalysts of an acceptable cost. In particular, graphene-based electrocatalysts commonly exhibit an enhanced HER performance owing to their distinctive structural merits, including a large surface area, high electrical conductivity, and good chemical stability. Considering the rapidly growing research enthusiasm for this topic over the last several years, herein, a panoramic review of recent advances in graphene-based electrocatalysts is presented, covering various advanced synthetic strategies, microstructural characterizations, and the applications of such materials in HER electrocatalysis. Lastly, future perspectives on the challenges and opportunities awaiting this emerging field are proposed and discussed.
Optimized designing of highly active electrocatalysts has been regarded as a critical point to the development of portable fuel cell systems with high power density. Here we report a facile and cost-effective strategy to synthesis of ultrafine Pd nanoparticles (NPs) supported on N and S dual-doped graphene (NS-G) nanosheets as multifunctional electrocatalysts for both direct formic acid fuel cell and direct methanol fuel cell. The incorporation of N and S atoms into graphene frameworks is achieved by a thermal treatment process, followed by the controlled growth of Pd NPs via a solvothermal approach. Owning to the unique structural features as well as the strong synergistic effects, the resulting Pd/NS-G hybrid exhibits outstanding electrocatalytic performance toward both formic acid and methanol electro-oxidation, such as higher anodic peak current densities and more exceptional catalytic stability than those of Pd/Vulcan XC-72R and Pd/undoped graphene catalysts. These findings open up new possibility in the construction of advanced Pd-based catalysts, which is conducive to solving the current bottlenecks of fuel cell technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.