Connexin43 (Cx43) is one of the most abundant gap junction proteins in the central nervous system. Abnormal opening of Cx43 hemichannels after ischemic insults causes apoptotic cell death. In this study, we found persistently increased expression of Cx43 8 h to 7 d after hypoxia/ischemia (HI) injury in neonatal rats. Pre-treatment with Gap26 and Gap27, two Cx43 mimetic peptides, significantly reduced cerebral infarct volume. Gap26 treatment at 24 h after ischemia improved functional recovery on muscle strength, motor coordination, and spatial memory abilities. Further, Gap26 inhibited Cx43 expression and reduced active astrogliosis. Gap26 interacted and co-localized with Cx43 together in brain tissues and cultured astrocytes. After oxygen glucose deprivation, Gap26 treatment reduced the total Cx43 level in cultured astrocytes; but Cx43 level in the plasma membrane was increased. Degradation of Cx43 in the cytoplasm was mainly via the ubiquitin proteasome pathway. Concurrently, phosphorylated Akt, which phosphorylates Cx43 on Serine(373) and facilitates the forward transport of Cx43 to the plasma membrane, was increased by Gap26 treatment. Microdialysis showed that increased membranous Cx43 causes glutamate release by opening Cx43 hemichannels. Extracellular glutamate concentration was significantly decreased by Gap26 treatment in vivo. Finally, we found that cleaved caspase-3, an apoptosis marker, was attenuated after HI injury by Gap26 treatment. Effects of Gap27 were analogous to those of Gap26. In summary, our findings demonstrate that modulation of Cx43 expression and astroglial function is a potential therapeutic strategy for ischemic brain injury.
Background
Obesity can cause pathological changes in organs. We determined the effects of chronic high fat diet (HFD) and intermittent fasting, a paradigm providing organ protection, on mouse heart.
Methods
Seven-week old CD1 male mice were randomly assigned to control, HFD and intermittent fasting groups. Control mice had free access to regular diet (RD). RD was provided every other day to mice in the intermittent fasting group. Mice in HFD group had free access to HFD. Their left ventricles were harvested 11 months after they had been on these diet regimens.
Results
HFD increased cardiomyocyte cross-section area and fibrosis. HFD decreased active caspase 3, an apoptosis marker, and the ratio of microtubule-associated protein 1A/1B-light chain 3 (LC3) II/LC3 I, an autophagy marker. HFD increased the phospho-glycogen synthase kinase-3β (GSK-3β) at Ser9, a sign of GSK-3β inhibition. Nuclear GATA binding protein 4 and yes-associated protein, two GSK-3β targeting transcription factors that can induce hypertrophy-related gene expression, were increased in HFD-fed mice. Mice on intermittent fasting did not have these changes except for the increased active caspase 3 and decreased ratio of LC3II/LC3I.
Conclusions
These results suggest that chronic HFD induces myocardial hypertrophy and fibrosis, which may be mediated by GSK-3β inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.