This study was aimed to improve the surgical accuracy of plating and screwing for complicated tibial plateau fracture assisted by 3D implants library and 3D-printed navigational template. Clinical cases were performed whereby complicated tibial plateau fractures were imaged using computed tomography and reconstructed into 3D fracture prototypes. The preoperative planning of anatomic matching plate with appropriate screw trajectories was performed with the help of the library of 3D models of implants. According to the optimal planning, patient-specific navigational templates produced by 3D printer were used to accurately guide the real surgical implantation. The fixation outcomes in term of the deviations of screw placement between preoperative and postoperative screw trajectories were measured and compared, including the screw lengths, entry point locations and screw directions. With virtual preoperative planning, we have achieved optimal and accurate fixation outcomes in the real clinical surgeries. The deviations of screw length was 1.57 ± 5.77 mm, P > 0.05. The displacements of the entry points in the x-, y-, and z-axis were 0.23 ± 0.62, 0.83 ± 1.91, and 0.46 ± 0.67 mm, respectively, P > 0.05. The deviations of projection angle in the coronal (x-y) and transverse (x-z) planes were 6.34 ± 3.42° and 4.68 ± 3.94°, respectively, P > 0.05. There was no significant difference in the deviations of screw length, entry point and projection angle between the ideal and real screw trajectories. The ideal and accurate preoperative planning of plating and screwing can be achieved in the real surgery assisted by the 3D models library of implants and the patient-specific navigational template. This technology improves the accuracy and efficiency of personalized internal fixation surgery and we have proved this in our clinical applications.
We improved the geometrical modeling procedure for fast and accurate reconstruction of orthopedic structures. This procedure consists of medical image segmentation, three-dimensional geometrical reconstruction, and assignment of material properties. The patient-specific orthopedic structures reconstructed by this improved procedure can be used in the virtual surgical planning, 3D printing of real orthopedic structures and finite element analysis. A conventional modeling consists of: image segmentation, geometrical reconstruction, mesh generation, and assignment of material properties. The present study modified the conventional method to enhance software operating procedures. Patient's CT images of different bones were acquired and subsequently reconstructed to give models. The reconstruction procedures were three-dimensional image segmentation, modification of the edge length and quantity of meshes, and the assignment of material properties according to the intensity of gravy value. We compared the performance of our procedures to the conventional procedures modeling in terms of software operating time, success rate and mesh quality. Our proposed framework has the following improvements in the geometrical modeling: (1) processing time: (femur: 87.16 ± 5.90 %; pelvis: 80.16 ± 7.67 %; thoracic vertebra: 17.81 ± 4.36 %; P < 0.05); (2) least volume reduction (femur: 0.26 ± 0.06 %; pelvis: 0.70 ± 0.47, thoracic vertebra: 3.70 ± 1.75 %; P < 0.01) and (3) mesh quality in terms of aspect ratio (femur: 8.00 ± 7.38 %; pelvis: 17.70 ± 9.82 %; thoracic vertebra: 13.93 ± 9.79 %; P < 0.05) and maximum angle (femur: 4.90 ± 5.28 %; pelvis: 17.20 ± 19.29 %; thoracic vertebra: 3.86 ± 3.82 %; P < 0.05). Our proposed patient-specific geometrical modeling requires less operating time and workload, but the orthopedic structures were generated at a higher rate of success as compared with the conventional method. It is expected to benefit the surgical planning of orthopedic structures with less operating time and high accuracy of modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.